
OPTIMISTIC STACK ALLOCATION AND DYNAMIC
HEAPIFICATION FOR MANAGED RUNTIMES ∗

ADITYA ANAND† AND MANAS THAKUR†

OBJECTS ALLOCATION
• Objects in Java are allocated on the heap.
• Automatic GC eases programmer burden

and reduces memory bugs.
• Access time from heap is high. Garbage

collection is an overhead.
• Optimization like method-local stack allo-

cation is performed to improve the overall
performance of runtime.

DYNAMIC FEATURES

HEAPIFICATION

O7

O9

g

zar

doo

. . .

. . .

p O7

O9

g

Stack

Heap

Heapification

Heapification

HEAPIFICATION ALOGRITHM

1 Procedure HeapificationCheckAtStore(srgReg, destReg)
2 if srcReg < stackBaseReg OR srcReg > stackEndReg then
3 No heapification required. /* Source object is outside stack bounds */
4 else

/* Source object is present on the stack */
5 if destReg < stackBaseReg OR destReg > stackEndReg then

/* Destination object is outside stack bounds, hence source object escapes */
6 Heapify starting from source object.
7 else

/* Both source and destination objects are on the stack */
8 if srcReg >= destReg then

/* Source has been allocated before destination and hence does not escape */
9 No heapification required.

10 else
/* Destination object has been allocated in either the same frame or a deeper frame as

compared to source object */
11 Perform stack-walk and heapify if needed.

STACK ORDERING
• Traversing stack-frames for parameters while

checking for heapification is costly.
• Establish object ordering to enable address

comparison for heapification checks, minimiz-
ing the need for frequent stack walks.

IMPROVING EFFICIENCY BY STACK ORDERING STACK ALLOCATION

h2
BASE OPT

Stack-
Objects

Stack-
Bytes

Stack-
Objects

Stack-
Bytes

29M 0.5 GB 452M 10.8 GB

pmd
BASE OPT

Stack-
Objects

Stack-
Bytes

Stack-
Objects

Stack-
Bytes

52M 1.3 GB 105M 2.4 GB

graphchi
BASE OPT

Stack-
Objects

Stack-
Bytes

Stack-
Objects

Stack-
Bytes

0.0M 0 GB 506M 9.1 GB

PERFORMANCE IMPROVEMENT

1500

1520

1540

1560

h2

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT
500

550

600

pmd

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

10700

10800

10900

graphchi

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

4000

X 2X 3X DEF

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

2000

4000

6000

X 2X 3X DEF

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BASE OPT

CONCLUSION
• Proposed an idea to have dynamic checks for

potential incorrect stack allocations, along with
repairing memory layout by heapifying escap-
ing objects and correcting their references.

• An efficient approach for performing heapifi-
cation checks by ordering objects on the stack.

• Future Work: Perform more aggressive stack-
allocation & enable further optimizations in the
JIT compilers.

ACADEMIC RESEARCH AND CAREERS FOR STUDENTS (ARCS 2025), COIMBATORE, INDIA.
† Author adresses: {adityaanand, manas}@cse.iitb.ac.in. PLATO Lab, Department of CSE, IIT Bombay, Mumbai.
∗ Anand et.al. “Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes". In Proceedings of the ACM on Programming Languages
(PLDI), Copenhagen, Denmark, June 24-28, 2024. URL: https://doi.org/10.1145/3656389


