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OBJECTS ALLOCATION
• Objects in Java are allocated on the heap.
• Automatic GC eases programmer burden

and reduces memory bugs.
• Access time from heap is high. Garbage

collection is an overhead.
• Optimization like method-local stack allo-

cation is performed to improve the overall
performance of runtime.

DYNAMIC FEATURES

HEAPIFICATION
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HEAPIFICATION ALOGRITHM

1 Procedure HeapificationCheckAtStore(srgReg, destReg)
2 if srcReg < stackBaseReg OR srcReg > stackEndReg then
3 No heapification required. /* Source object is outside stack bounds */
4 else

/* Source object is present on the stack */
5 if destReg < stackBaseReg OR destReg > stackEndReg then

/* Destination object is outside stack bounds, hence source object escapes */
6 Heapify starting from source object.
7 else

/* Both source and destination objects are on the stack */
8 if srcReg >= destReg then

/* Source has been allocated before destination and hence does not escape */
9 No heapification required.

10 else
/* Destination object has been allocated in either the same frame or a deeper frame as

compared to source object */
11 Perform stack-walk and heapify if needed.

STACK ORDERING
• Traversing stack-frames for parameters while

checking for heapification is costly.
• Establish object ordering to enable address

comparison for heapification checks, minimiz-
ing the need for frequent stack walks.

IMPROVING EFFICIENCY BY STACK ORDERING STACK ALLOCATION
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PERFORMANCE IMPROVEMENT
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CONCLUSION
• Proposed an idea to have dynamic checks for

potential incorrect stack allocations, along with
repairing memory layout by heapifying escap-
ing objects and correcting their references.

• An efficient approach for performing heapifi-
cation checks by ordering objects on the stack.

• Future Work: Perform more aggressive stack-
allocation & enable further optimizations in the
JIT compilers.
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