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OBJECTS ALLOCATION DYNAMIC FEATURES

Objects in Java are allocated on the heap. class A { B g: ) bar(a, b):

Automatic GC eases programmer burden class D { } /% method doo */

and reduces memory bugs. AT void zar(A p, D q) {

void doo(D q) { q.f = new AQ); // Os [HCR: q.f = p;]

Access time from heap is high. Garbage D a = new DO): // O-

collection is an overhead. Ab = new AQ): // O 1} /% method zar */

Optimization like method-local stack allo- a.f = new AQ); // O7 void bar(D p1, A p2) {
cation is performed to improve the overall Ap=a.f; p1.f = p2;

performance of runtime a.f.g = new BQ; // Oy } /* method bar */
| zar(p, Q); } /* class D %/

HEAPIFICATION HEAPIFICATION ALOGRITHM

1 Procedure HeapificationCheckAtStore(srgReg, destReq)

. 2 if srcReg < stackBaseReg OR srcReg > stackEndReg then
Heapification . ;o . . . . .
3 No heapification required. /* Source object is outside stack bounds */
4 else
/* Source object is present on the stack */
o 5 if destReg < stackBaseReg OR destReg > stackEndReqg then

Heapification /* Destination object is outside stack bounds, hence source object escapes */
Heapity starting from source object.

7 else

/* Both source and destination objects are on the stack */
8 if srcReg >= destReg then

/* Source has been allocated before destination and hence does not escape */
| No heapification required.

10 else

Traversing stack-frames for parameters while /* Destination object has been allocated in either the same frame or a deeper frame as
checking for heapification is costly. compared to source object */

Establish object ordering to enable address 1  Perform stack-walk and heapity if needed.
comparison for heapification checks, minimiz-
ing the need for frequent stack walks.
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ing objects and correcting their references.

An efficient approach for performing heapifi-
cation checks by ordering objects on the stack.

20000 -+

AN
o
o
o

17223 17150

1179011830

No. of GC cycles
No. of GC cycles

10000 —+

N
o
o
o

No. of GC cycles
S
3

Future Work: Perform more aggressive stack-
- - allocation & enable further optimizations in the
X 2X 3X DEF X 2X 3X DEF X 2X 3X DEF .
Max Heap (MB) i Max Heap (MB) | Max Heap (MB) ]IT compllers.

389 388

ACADEMIC RESEARCH AND CAREERS FOR STUDENTS (ARCS 2025), COIMBATORE, INDIA.

I Author adresses: adityaanand, manas}@cse.iitb.ac.in. PLATO Lab, Department of CSE, IIT Bombay, Mumbeai.
* Anand et.al. “Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes". In Proceedings of the ACM on Programming Languages
(PLDI), Copenhagen, Denmark, June 24-28, 2024. URL: https://doi.org/10.1145/3656389



