OPTIMISTICSTACKALLOCATION AND DYNAMIC
HEAPIFICATION FORMANAGED RUNTIMES *

ADITYA ANAND' AND MANAS THAKUR!

OBJECTS ALLOCATION DYNAMIC FEATURES

Objects in Java are allocated on the heap. class A { B g:) bar(a, b):

Automatic GC eases programmer burden class D { } /% method doo */

and reduces memory bugs. AT void zar(A p, D q) {

void doo(D q) { q.f = new AQ); // Os [HCR: q.f = p;]

Access time from heap is high. Garbage D a = new DO): // O-

collection is an overhead. Ab = new AQ): // O 1} /% method zar */

Optimization like method-local stack allo- a.f = new AQ); // O7 void bar(D p1, A p2) {
cation is performed to improve the overall Ap=a.f; p1.f = p2;

performance of runtime a.f.g = new BQ; // Oy } /* method bar */
| zar(p, Q); } /* class D %/

HEAPIFICATION HEAPIFICATION ALOGRITHM

1 Procedure HeapificationCheckAtStore(srgReg, destReq)

. 2 if srcReg < stackBaseReg OR srcReg > stackEndReg then
Heapification . ;o
3 No heapification required. /* Source object is outside stack bounds */
4 else
/* Source object is present on the stack */
o 5 if destReg < stackBaseReg OR destReg > stackEndReqg then

Heapification /* Destination object is outside stack bounds, hence source object escapes */
Heapity starting from source object.

7 else

/* Both source and destination objects are on the stack */
8 if srcReg >= destReg then

/* Source has been allocated before destination and hence does not escape */
| No heapification required.

10 else

Traversing stack-frames for parameters while /* Destination object has been allocated in either the same frame or a deeper frame as
checking for heapification is costly. compared to source object */

Establish object ordering to enable address 1 Perform stack-walk and heapity if needed.
comparison for heapification checks, minimiz-
ing the need for frequent stack walks.

IMPROVING EFFICIENCY BY STACK ORDERING STACK ALLOCATION
h2
ml |0, allocated here m1 |Op allocated here m1 22 BASE OPT
class T { &
T f. - Stack- Stack- Stack- Stack-
’ oQ . o
void m1Q) {m2(...):} m2 |0y allocated here m2 |0, allocated here m2| O, and O, both g Objects | Bytes Objects | Bytes
void m2() {m3(...):3 allocated here s 29M 05GB |[[452M | 10.8GB
void m3(T a, T b) ¢ m3| af=b m3| af=b m3| af=b 2
a.f = b; < pmd
) 3. BASE OPT
: Case-1 : : Case-2 : : Case-3 : Stack- Stack- Stack- Stack-
} -~ (Op escapes O, doesn’t escape: Oy doesn’t escape: ¥ Objects | Bytes Objects | Bytes
(a) (b) 52M 1.3 GB 105M 2.4 GB

graphchi
BASE OPT

PERFORMANCE IMPROVEMENT

| | Stack- Stack- Stack- Stack-
S 1560- | S S Objects | Bytes Objects | Bytes
O O o
o S 600 - S 10900 -
D 1540 Legend L Legend L E Legend 0.0M 0 GB 506M 9.1 GB
o ES BASE ® 550 ES BASE ® 10800- ES BASE
= 1520 E3 moPT S E3 moPT S E3 moPT
B = kSt Ed oPT D E3 oPT
D N N
5 0. . 5 0 | 5 10700- CONCLUSION
g —— g * . — g * . i
| Proposed an idea to have dynamic checks for
h2 hchi
~ Pmd | SR potential incorrect stack allocations, along with
repairing memory layout by heapifying escap-
000 W BASE m OPT 6000 T 505 » BASE B OPT 30000 T 55500 W BASE & OPT p g y y y p y g p

ing objects and correcting their references.

An efficient approach for performing heapifi-
cation checks by ordering objects on the stack.

20000 -+

AN
o
o
o

17223 17150

1179011830

No. of GC cycles
No. of GC cycles

10000 —+

N
o
o
o

No. of GC cycles
S
3

Future Work: Perform more aggressive stack-
- - allocation & enable further optimizations in the
X 2X 3X DEF X 2X 3X DEF X 2X 3X DEF .
Max Heap (MB) i Max Heap (MB) | Max Heap (MB)]IT compllers.

389 388

ACADEMIC RESEARCH AND CAREERS FOR STUDENTS (ARCS 2025), COIMBATORE, INDIA.

I Author adresses: adityaanand, manas}@cse.iitb.ac.in. PLATO Lab, Department of CSE, IIT Bombay, Mumbeai.
* Anand et.al. “Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes". In Proceedings of the ACM on Programming Languages
(PLDI), Copenhagen, Denmark, June 24-28, 2024. URL: https://doi.org/10.1145/3656389

