
11th	February	2026

Precision without Regret:
Optimistic Stack Allocation in

JIT Compilers
Aditya Anand

Advisor: Prof. Manas Thakur
Indian Institute of Technology Bombay

Compilation in Programming Languages

• Languages like Java, C# and Scala:

• Languages like C, C++ :

1

• Use static compilers (gcc, g++).
• Generate executable which can be directly executed on machine.
• Optimizations performed will be based on statically available information.

• First get compiled by a static compiler.
• Compiled output is passed to a managed runtime for further execution.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

STATIC DYNAMIC

Java Code Java Bytecode

Interpreter

JIT Compiler(s)

Javac Compiler Final Output

JVM

Program Translation in Java

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

• Static: Javac generates bytecode. • Dynamic: Interpreter and JIT compiler
generate the final output.

2

Program Translation in Java
JIT Compiler(s)

NativeCode

Optimizations

IR

ByteCode

• Static: Javac generates bytecode. • Dynamic: Interpreter and JIT compiler
generate the final output.

Object Allocation

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

2

Objects in Java

• A a = new A(); // On heap

• Benefits:
• Unburden programmer from making complex allocation-deallocation

decisions and reduce the possibility of harmful memory bugs.

• Challenges:
• Access time is high.
• Garbage collection is an overhead.

• Managed runtime for Java allocates all objects on the heap.
• Unused objects automatically freed up by garbage collector.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

3

Stack Allocation
• Memory allocated on stack:

• Less access time.
• Get freed up as soon as the allocating method returns.

• In case of Java:
• Escape analysis is performed: Just-in-time (JIT) compilation
• Very few objects get allocated on stack.

• Escape Analysis

 — Imprecise

• Determines the set of objects that do not escape the allocating method.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

4

• Idea: Staged Static+Dynamic analysis for Managed Runtimes.
• Offload the costly analysis to static time.

• Perform precise (context-, flow-, field-sensitive) escape analysis ahead of time.
• Use analysis results in the JIT to enable additional optimizations.

• Statically generated escape analysis result to optimistically allocate objects on
stack at run-time.

Staged Static + Dynamic Analysis

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

5

Challenges with Static Analysis

• Challenges:
• Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement

(HCR) allows code changes.
• An object that was stack allocated based on static-analysis results, might

start escaping at run-time.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

How to safely allocate objects on stack in a managed runtime?

6

Motivating Example

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

7

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

Motivating Example
1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

8

Motivating Example

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

9

Motivating Example

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

10

Motivating Example

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

11

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Motivating Example

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

12

Motivating Example

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

13

Motivating Example

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

Stack Allocate
O4,	O5	and		O6

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

14

Motivating Example

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

Dynamically
loaded

16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

15

16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Motivating Example

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Dynamically
loaded16

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Motivating Example

Incorrect
allocation on

stack

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

17

11. void bar(A p1, A p2) {
12. p1.f = p2;
13. } /* method bar */

HCR Example

Incorrect
allocation on

stack
20

16. }
17. } /* class A */

14. void zar(A p, A q) {
15. . . .15. q.f = p;

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

18

Dynamic Heapification

Heapification

f

f

Heapify

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

19

Heapification

f

f

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

20

f

Heapification

f

f

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

21

Heapification

f

f

f

f

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

22

Heapification

ff

f

How to identify the need for heapification?

Heapification Checks

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

• JNI APIs used to perform stores in called C/C++ code. (Byte code: setObjectField.)

• Calls to native. (Byte code: putObject, putObjectOrdered, putObjectVolatile.)
• Throwing of exception. (Byte code: athrow.)

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

23

Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

24

rhs_obj >= lhs_obj

Scenarios at Store Statement
1. class T {
2. T f;
3. void m1() {m2(. . .);}
4. void m2() {m3(. . .);}
5. void m3(T a, T b) {
6. a.f = b;
7. } /* method m3 */
8.} /* class T */

Stack Walk — Costly

rhs_obj >= lhs_obj

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

25

Ordering Objects on Stack

• Use the stack-order in VM to re-order the list of stack
allocated objects.

• Reduces cost of heapification checks.
• In case of cycles — result will not be valid only for one

store statement.

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

• Statically create a partial order of stack-allocatable objects.

[Ob, Oa]

Stack Walk

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

26

• Implementation:

Static analysis Runtime components:

• Benchmarks:
• DaCapo benchmark suites:

 (23.10-chopin and 9.12 MRI)

• SPECjvm 2008

• Evaluation schemes:
• BASE: Stack allocation with the existing

JIT scheme.

• OPT: Stack allocation with our
optimistic scheme.

• Compute:
• Enhancement in stack allocation.

• Impact on performance and garbage
collection.

Implementation and Evaluation

27

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0	(0.0	%) 0M	(0.00%) 0MB 32	(4.15%) 506.3M	(6.9%) 9184.6MB

fop 10	(0.15%) 0.04M	(0.002%) 1MB 50	(0.77%) 9.8M	(0.42%) 161.2MB

h2 61	(2.33%) 29M	(0.92%) 523MB 94	(3.87%) 452M	(13.92%) 10801MB

luindex 35	(1.35%) 3M	(2.39%) 98MB 89	(3.49%) 5M	(3.49%) 133MB

lusearch 30	(1.09%) 25M	(3.23%) 775MB 78	(3.05%) 59M	(7.4%) 1686MB

pmd 89	(1.09%) 52M	(7.20%) 1310MB 191	(3.97%) 105M	(14.2%) 2465MB

compiler 93	(1.73%) 94M	(5.50%) 1720MB 137	(2.75%) 105M	(6.17%) 2329MB

rsa 16	(1.13%) 0.1M	(1.1%) 46MB 35	(3.18%) 7M	(4.62%) 170MB

signverify 15	(0.84%) 0.24M	(0.86%) 6.8MB 51	(3.10%) 2.1M	(7.24%) 49.4MB

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

28

Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0	(0.0	%) 0M	(0.00%) 0MB 32	(4.15%) 506.3M	(6.9%) 9184.6MB

fop 10	(0.15%) 0.04M	(0.002%) 1MB 50	(0.77%) 9.8M	(0.42%) 161.2MB

h2 61	(2.33%) 29M	(0.92%) 523MB 94	(3.87%) 452M	(13.92%) 10801MB

luindex 35	(1.35%) 3M	(2.39%) 98MB 89	(3.49%) 5M	(3.49%) 133MB

lusearch 30	(1.09%) 25M	(3.23%) 775MB 78	(3.05%) 59M	(7.4%) 1686MB

pmd 89	(1.09%) 52M	(7.20%) 1310MB 191	(3.97%) 105M	(14.2%) 2465MB

compiler 93	(1.73%) 94M	(5.50%) 1720MB 137	(2.75%) 105M	(6.17%) 2329MB

rsa 16	(1.13%) 0.1M	(1.1%) 46MB 35	(3.18%) 7M	(4.62%) 170MB

signverify 15	(0.84%) 0.24M	(0.86%) 6.8MB 51	(3.10%) 2.1M	(7.24%) 49.4MB

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

28

Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0	(0.0	%) 0M	(0.00%) 0MB 32	(4.15%) 506.3M	(6.9%) 9184.6MB

fop 10	(0.15%) 0.04M	(0.002%) 1MB 50	(0.77%) 9.8M	(0.42%) 161.2MB

h2 61	(2.33%) 29M	(0.92%) 523MB 94	(3.87%) 452M	(13.92%) 10801MB

luindex 35	(1.35%) 3M	(2.39%) 98MB 89	(3.49%) 5M	(3.49%) 133MB

lusearch 30	(1.09%) 25M	(3.23%) 775MB 78	(3.05%) 59M	(7.4%) 1686MB

pmd 89	(1.09%) 52M	(7.20%) 1310MB 191	(3.97%) 105M	(14.2%) 2465MB

compiler 93	(1.73%) 94M	(5.50%) 1720MB 137	(2.75%) 105M	(6.17%) 2329MB

rsa 16	(1.13%) 0.1M	(1.1%) 46MB 35	(3.18%) 7M	(4.62%) 170MB

signverify 15	(0.84%) 0.24M	(0.86%) 6.8MB 51	(3.10%) 2.1M	(7.24%) 49.4MB

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

28

Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0	(0.0	%) 0M	(0.00%) 0MB 32	(4.15%) 506.3M	(6.9%) 9184.6MB

fop 10	(0.15%) 0.04M	(0.002%) 1MB 50	(0.77%) 9.8M	(0.42%) 161.2MB

h2 61	(2.33%) 29M	(0.92%) 523MB 94	(3.87%) 452M	(13.92%) 10801MB

luindex 35	(1.35%) 3M	(2.39%) 98MB 89	(3.49%) 5M	(3.49%) 133MB

lusearch 30	(1.09%) 25M	(3.23%) 775MB 78	(3.05%) 59M	(7.4%) 1686MB

pmd 89	(1.09%) 52M	(7.20%) 1310MB 191	(3.97%) 105M	(14.2%) 2465MB

compiler 93	(1.73%) 94M	(5.50%) 1720MB 137	(2.75%) 105M	(6.17%) 2329MB

rsa 16	(1.13%) 0.1M	(1.1%) 46MB 35	(3.18%) 7M	(4.62%) 170MB

signverify 15	(0.84%) 0.24M	(0.86%) 6.8MB 51	(3.10%) 2.1M	(7.24%) 49.4MB

Stack Allocation: 71% Stack Bytes: 54%
(Less Heap Allocation)

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

28

Performance

0.275

0.300

0.325

0.350

0.375

compiler

N
or

m
al

iz
ed

 ti
m

e
(in

 s
ec

on
ds

)

Legend
BASE

OPT

29500

30000

30500

graphchi

N
or

m
al

iz
ed

 ti
m

e
(in

 s
ec

on
ds

)

Legend
BASE

OPT

5000

6000

7000

8000

h2

N
or

m
al

iz
ed

 ti
m

e
(in

 s
ec

on
ds

)

Legend
BASE

OPT

950

975

1000

1025

lusearch

N
or

m
al

iz
ed

 ti
m

e
(in

 s
ec

on
ds

)

Legend
BASE

OPT

505

510

515

520

525

530

pmd

N
or

m
al

iz
ed

 ti
m

e
(in

 s
ec

on
ds

)

Legend
BASE

OPT

300

400

500

600

700

fop

N
or

m
al

iz
ed

 ti
m

e
(in

 s
ec

on
ds

)

Legend
BASE

OPT

Performance Improvement: 8.8%

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

29

Garbage Collection

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

X 2X 3X Def

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

40000

X 2X 3X DEF

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BASE OPT

compiler fop graphchi

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

4000

X 2X 3X DEF

BASE OPT

h2
Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

40000

50000

X 2X 3X DEF

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

2000

4000

6000

X 2X 3X DEF

BASE OPT

lusearch pmd

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

30

37

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Garbage Collection

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

X 2X 3X Def

BASE OPT

compiler

Garbage Collection

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

X 2X 3X Def

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

40000

X 2X 3X DEF

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BASE OPT

compiler fop graphchi

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

4000

X 2X 3X DEF

BASE OPT

h2
Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

40000

50000

X 2X 3X DEF

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

2000

4000

6000

X 2X 3X DEF

BASE OPT

lusearch pmd

Fewer GC Cycles: 5.3%

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

30

More in Paper

• Implementation of opcodes for
statements that can cause an object
to escape, across JIT & interpreter.

• Simulating longer runs of benchmarks
with forced JIT compilation.

• Analyzing allocation sites that lead to
high number of allocations.

• Cost of heapification.
• Offline cost.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

31

PLDI	24

• Fallback as heapification allowed us to maintain functional correctness due to the
dynamism offered by the Language/VM

• Overall, one of the first approaches to soundly and efficiently use static (offline)
analysis results in a JIT compiler!

Is this the best we can do for stack allocation?

Can we go more aggressive?

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

32

To summarize and Moving Ahead

Recent Works on Static + Dynamic Analysis

All these works use AOT-analysis
results to perform optimizations in

 JIT Compilers.

TOPLAS	19

CASCON	22

PLDI	24

SAS	22

FMSD	24

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

33

• Profile Information:

• Dynamic Class Hierarchy:

• Inlining Table:

Standard Speculative Optimizations

How can we get the best of static analysis and run-time information ??

• Basic invocation, loop invariant values.

• Branch information, instance of checks.

• Type profiles at type-cast statements and polymorphic callsites.

• Information about loaded subclasses of a given class during execution.

• Information about the list of methods inlined at various callsites.

Conservative Fallback

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

34

Speculative Optimization in JIT Compilers

CoSSJIT: Combining Static Analysis and
Speculation in JIT Compilers

• Idea:
• Enrich Static Analysis results with possibility of speculation at run-time.
• Enable the JIT Compiler to perform speculative optimization based on the

static analysis results.

OOPSLA	25

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

35

1. class A {
2. static A global;  

 . . .
4. void foo(A z) {
5. A x = new A(); // O5
6. A y = new A(); // O6
7. x.f = new A(); // O7

. . .
14. z.bar(x);
15. } /* method foo */
16. } /* class A */

17. class B extends A {
18. void bar(A p2) { . . . }
19. } /* class B */

⊓ : {B, C } —> [O5],[O7] [Escaping]

20. class C extends A {
21. void bar(A p3) {
22. global = p3;
23. }
24. } /* class C */

Escapes

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

36

1. Polymorphic Callsites

1. class A {  
 . . .

4. void foo(A z) {
5. A x = new A(); // O5
6. A y = new A(); // O6
7. x.f = new A(); // O7

. . .
14. z.bar(x);
15. } /* method foo */
16. } /* class A */

17. class B extends A {
18. void bar(A p2) { . . . }
19. } /* class B */

20. class C extends A {
21. void bar(A p3) {
22. global = p3;
23. }
24. } /* class C */

Escapes

At runtime:
• Class Hierarchy (CHTable): C is not loaded.
• Most of the times z is of type “B”.A.foo() [. .] [z_14, {B},{O5, O7}]

polymorphic_cond

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

37

1. Polymorphic Callsites

1. class A {  
 . . .

5. void foo(A p1) {
6. A y = new A(); // O6
 . . .
9. if(p1 instance A) {
 . . .
11. } else {
13. global = y;
14. }
15. y.f = p1;
16. } /* method foo */

⊓ : —> O6 (Escaping)

Escapes

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

38

2. Branching

1. class A {  
 . . .

5. void foo(A p1) {
6. A y = new A(); // O6
 . . .
9. if(p1 instance A) {
 . . .
11. } else {
13. global = y;
14. }
15. y.f = p1;
16. } /* method foo */

At runtime:
• The “if” branch is taken most
number of times.

A.foo() [. .] [9,{O6}]
branching_cond

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

39

2. Branching

1. class A {
2. void foo() {
3. . . .
4. z.bar(x);
5. r.foobar(p, q);
6. } /* method foo */
7. void bar(A p1) { . . . }
8. void foobar(A p2) { . . . }
9. } /* class A */

10. class B extends A {
11. void bar(A p3) {
12. // p3’s pointee doesn’t escape
13. p3.f = new A(); // O13
14. p3.foobar(p3.f);
15. } /* method bar */
16. void foobar(A p4) { . . . }
17. } /* class B */
18. class C extends A { . . . }

O13 marked as Escaping.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

40

3. Method Inlining

1. class A {
2. void foo() {
3. . . .
4. z.bar(x);
5. r.foobar(p, q);
6. } /* method foo */
7. void bar(A p1) { . . . }
8. void foobar(A p2) { . . . }
9. } /* class A */

10. class B extends A {
11. void bar(A p3) {
12. // p3’s pointee doesn’t escape
13. p3.f = new A(); // O13
14. p3.foobar(p3.f);
15. } /* method bar */
16. void foobar(A p4) { . . . }
17. } /* class B */
18. class C extends A { . . . }

Inline
x

₹

p3

foo

bar

On

O13

Callee object on caller’s stack frame

f

f

A.foo() [. .] [4,B.bar(p3),{O13}]
inlining_cond

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

41

3. Method Inlining

A::foo() [Direct_Allocation] [polymorphic_cond] [branching_cond] [inlining_cond]

ConditionalDirect

Statically generated results

JVM

JIT

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

42

Summary

Algorithm in the JIT Compiler

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. Polymorphic Callsite
for each O in JIT_identified_objects(m):

 (CHm[c] ⊆ SAm[O][c]) ∨ (∀t ∈ SAm[O][c] Σ CPm(t) > ST)

2. Branching Conditions

for each O in JIT_identified_objects(m):

 (∀ b ∈ SAm[O][br] with Σ BPm(b) > ST)
St

at
ic

 R
es

O

α, β

CH
Ta

bl
e

α
c

Pr
of

ile val1α
β val2

St
at

ic
 R

es b1,b2

O Pr
of

ile val1b1

b2 val2
43

Algorithm in the JIT Compiler

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

3. Inlining Conditions

for each callsite c ∈ CallSitesm:
 Callersc = SAm[c]
 if ∃ n such that (n ∈ ITm[c] ∧ n ∈ Callersc):
 Ostatic = statically_marked_objects(m)
 mark all O ∈ Ostatic

St
at

ic
 R

es

O1

c,<m>

O2 On

<m>IT
ab

le c

44

109

243

168
152

347

84

118
129

254

Benchmarks

0

100

200

300

400

graphchi sunflow xalan fop zxing luindex lusearch h2 compiler

Branching Inlining PolyCall Unconditional BaseLine

All speculative conditions make noticeable contributions.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

45

Contributions by different Speculative Conditions

11000

12000

13000

graphchi

N
or

m
al

iz
ed

 ti
m

e
(m

illi
 s

ec
)

Legend
BaseLine

CoSSJIT

260

265

270

luindex

N
or

m
al

ize
d

tim
e

(m
illi

 s
ec

)

Legend
BaseLine

CoSSJIT

940

950

960

970

980

990

lusearch

N
or

m
al

iz
ed

 ti
m

e
(m

illi
 s

ec
)

Legend
BaseLine

CoSSJIT

21000

21500

22000

22500

sunflow

N
or

m
al

iz
ed

 ti
m

e
(m

illi
 s

ec
)

Legend
BaseLine

CoSSJIT

3800

3840

3880

3920

xalan

N
or

m
al

ize
d

tim
e

(m
illi

 s
ec

)

Legend
BaseLine

CoSSJIT

12550

12600

12650

12700

zxing

N
or

m
al

ize
d

tim
e

(m
illi

 s
ec

)

Legend
BaseLine

CoSSJIT

Performance Improvement: 6.7%

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

46

Performance Improvement

• Overall,	one	of	the	Lirst	approaches	that	strike	a	balance	between	static	analysis	and	JIT	
speculation,	harnessing	the	best	of	both	the	worlds.

• Enriched	the	static	analysis	with	possibility	of	speculation	at	run-time.	
• Mechanism	in	the	JIT	compiler	to	incorporate	the	conditional	static	analysis	results.	

Precise Escape

Analysis Results
.res file

More Capable

JIT (SMC+ SMI

+ SBE)

OpenJ9

Soot

+

Enriched Static Analysis

Conditional Stack

Allocation Results

Thank You !!
Precision without Regret: Optimistic Stack Allocation in JIT Compilers

47

CoSSJIT: Take Aways

