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Compilation in Programming Languages

• Languages like Java, C# and Scala:

• Languages like C, C++ : 
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• Use static compilers (gcc, g++). 
• Generate executable which can be directly executed on machine. 
• Optimizations performed will be based on statically available information.

• First get compiled by a static compiler. 
• Compiled output is passed to a managed runtime for further execution.
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• Static: Javac generates  bytecode. • Dynamic: Interpreter and JIT compiler 
generate the final output.
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Program Translation in Java
JIT Compiler(s)

NativeCode

Optimizations

IR

ByteCode

• Static: Javac generates  bytecode. • Dynamic: Interpreter and JIT compiler 
generate the final output.

Object Allocation
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Objects in Java

• A a = new A(); // On heap

• Benefits: 
• Unburden programmer from making complex allocation-deallocation 

decisions and reduce the possibility of harmful memory bugs.

• Challenges: 
• Access time is high. 
• Garbage collection is an overhead.

• Managed runtime for Java allocates all objects on the heap. 
• Unused objects automatically freed up by garbage collector. 
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Stack Allocation
• Memory allocated on stack: 

• Less access time. 
• Get freed up as soon as the allocating method returns.

• In case of Java: 
• Escape analysis is performed: Just-in-time (JIT) compilation                       
• Very few objects get allocated on stack. 

• Escape Analysis

 — Imprecise

• Determines the set of objects that do not escape the allocating method.      
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• Idea: Staged Static+Dynamic analysis for Managed Runtimes. 
• Offload the costly analysis to static time.  

• Perform precise (context-, flow-, field-sensitive) escape analysis ahead of time. 
• Use analysis results in the JIT to enable additional optimizations. 

• Statically generated escape analysis result to optimistically allocate objects on 
stack at run-time.

Staged Static + Dynamic Analysis
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Challenges with Static Analysis

• Challenges: 
• Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement 

(HCR) allows code changes. 
• An object that was stack allocated based on static-analysis results, might 

start escaping at run-time.
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How to safely allocate objects on stack in a managed runtime?
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Motivating Example

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 
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Motivating Example
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Motivating Example
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Dynamically 
loaded

16. class B extends A
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11.   void zar(A p, A q) { . . .}
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Incorrect 
allocation on 
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Precision without Regret: Optimistic Stack Allocation in JIT Compilers

16. class B extends A
17.   void zar(A p, A q) {
18.      q.f = p;
19.   } /* method zar */ 
20. } /* class B */ 

11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 

17



11.   void bar(A p1, A p2) {
12.      p1.f = p2; 
13.   } /* method bar */ 

HCR Example

Incorrect 
allocation on 

stack
20

16.   }
17. } /* class A */

14.   void zar(A p, A q) { 
15.       . . .15.       q.f = p;
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Dynamic Heapification



Heapification
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Heapification

ff

f

How to identify the need for heapification?

Heapification Checks

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

• JNI APIs used to perform stores in called C/C++ code. (Byte code: setObjectField.)

• Calls to native. (Byte code: putObject, putObjectOrdered, putObjectVolatile.)
• Throwing of exception. (Byte code: athrow.)
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Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

Precision without Regret: Optimistic Stack Allocation in JIT Compilers
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rhs_obj >= lhs_obj



Scenarios at Store Statement
1. class T {
2.   T f;
3.   void m1() {m2(. . .);}
4.   void m2() {m3(. . .);}
5.   void m3(T a, T b) {
6.      a.f = b;
7.   } /* method m3 */
8.} /* class T */

Stack Walk — Costly

rhs_obj >= lhs_obj
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Ordering Objects on Stack



• Use the stack-order in VM to re-order the list of stack 
allocated objects. 

• Reduces cost of heapification checks. 
• In case of cycles — result will not be valid only for one 

store statement.

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

• Statically create a partial order of stack-allocatable objects. 

[Ob, Oa]

Stack Walk
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• Implementation: 

Static analysis Runtime components:

• Benchmarks:
• DaCapo benchmark suites:  

        (23.10-chopin and 9.12 MRI)

• SPECjvm 2008

• Evaluation schemes: 
• BASE: Stack allocation with the existing 

JIT scheme. 

• OPT: Stack allocation with our 
optimistic scheme.

• Compute: 
• Enhancement in stack allocation. 

• Impact on performance and garbage 
collection.

Implementation and Evaluation
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Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0	(0.0	%) 0M	(0.00%) 0MB 32	(4.15%) 506.3M	(6.9%) 9184.6MB

fop 10	(0.15%) 0.04M	(0.002%) 1MB 50	(0.77%) 9.8M	(0.42%) 161.2MB

h2 61	(2.33%) 29M	(0.92%) 523MB 94	(3.87%) 452M	(13.92%) 10801MB

luindex 35	(1.35%) 3M	(2.39%) 98MB 89	(3.49%) 5M	(3.49%) 133MB

lusearch 30	(1.09%) 25M	(3.23%) 775MB 78	(3.05%) 59M	(7.4%) 1686MB

pmd 89	(1.09%) 52M	(7.20%) 1310MB 191	(3.97%) 105M	(14.2%) 2465MB

compiler 93	(1.73%) 94M	(5.50%) 1720MB 137	(2.75%) 105M	(6.17%) 2329MB

rsa 16	(1.13%) 0.1M	(1.1%) 46MB 35	(3.18%) 7M	(4.62%) 170MB

signverify 15	(0.84%) 0.24M	(0.86%) 6.8MB 51	(3.10%) 2.1M	(7.24%) 49.4MB
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Performance 
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Performance Improvement: 8.8% 
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Garbage Collection
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CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Garbage Collection
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Fewer GC Cycles: 5.3% 
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More in Paper

• Implementation of opcodes for 
statements that can cause an object 
to escape, across JIT & interpreter. 

• Simulating longer runs of benchmarks 
with forced JIT compilation. 

• Analyzing allocation sites that lead to 
high number of allocations. 

• Cost of heapification. 
• Offline cost.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers
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• Fallback as heapification allowed us to maintain functional correctness due to the 
dynamism offered by the Language/VM  

• Overall, one of the first approaches to soundly and efficiently use static (offline) 
analysis results in a JIT compiler!

Is this the best we can do for stack allocation? 

Can we go more aggressive?

Precision without Regret: Optimistic Stack Allocation in JIT Compilers
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To summarize and Moving Ahead



Recent Works on Static + Dynamic Analysis

All these works use AOT-analysis  
results to perform optimizations in 

 JIT Compilers. 

TOPLAS	19

CASCON	22

PLDI	24

SAS	22

FMSD	24
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• Profile Information: 

• Dynamic Class Hierarchy: 

• Inlining Table: 

Standard Speculative Optimizations

How can we get the best of static analysis and run-time information ??

• Basic invocation, loop invariant values.

• Branch information, instance of checks.

• Type profiles at type-cast statements and polymorphic callsites.

• Information about loaded subclasses of a given class during execution.

• Information about the list of methods inlined at various callsites.

Conservative Fallback

Precision without Regret: Optimistic Stack Allocation in JIT Compilers
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CoSSJIT: Combining Static Analysis and  
Speculation in JIT Compilers 

• Idea:  
• Enrich Static Analysis results with possibility of speculation at run-time. 
• Enable the JIT Compiler to perform speculative optimization based on the 

static analysis results. 

OOPSLA	25
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1. class A {
2. static A global;   

 .  .  . 
4.  void foo(A z) {
5.      A x = new A(); // O5 
6.      A y = new A(); // O6
7.      x.f = new A(); // O7 

. . .
14.     z.bar(x);
15.   } /* method foo */
16. } /* class A */

17. class B extends A {
18.   void bar(A p2) { . . . }
19. } /* class B */

⊓ : {B, C } —> [O5],[O7] [Escaping]  

20. class C extends A { 
21.   void bar(A p3) { 
22.     global = p3; 
23.   }
24. } /* class C */

Escapes
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1. class A {  
  . . .  

4.  void foo(A z) {
5.      A x = new A(); // O5 
6.      A y = new A(); // O6
7.      x.f = new A(); // O7 

. . .
14.     z.bar(x);
15.   } /* method foo */
16. } /* class A */

17. class B extends A {
18.   void bar(A p2) { . . . }
19. } /* class B */

20. class C extends A { 
21.   void bar(A p3) { 
22.     global = p3; 
23.   }
24. } /* class C */

Escapes

At runtime:  
•  Class Hierarchy (CHTable): C is not loaded. 
•  Most of the times z is of type “B”.A.foo() [ . . ] [z_14, {B},{O5, O7}]

polymorphic_cond
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1. Polymorphic Callsites



1. class A {  
  . . .  

5.  void foo(A p1) {
6.      A y = new A(); // O6
     . . .
9.      if(p1 instance A) {
     . . .
11.     } else {
13.        global = y; 
14.    }
15.    y.f = p1;
16.   } /* method foo */ 

⊓ : —> O6 (Escaping)  

Escapes
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1. class A {  
  . . .  

5.  void foo(A p1) {
6.      A y = new A(); // O6
     . . .
9.      if(p1 instance A) {
     . . .
11.     } else {
13.        global = y; 
14.    }
15.    y.f = p1;
16.   } /* method foo */ 

At runtime:  
•  The “if” branch is taken most 
number of times.

A.foo() [ . . ] [9,{O6}]
branching_cond
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2. Branching



1. class A {
2.   void foo() {
3.      . . .
4.      z.bar(x);
5.      r.foobar(p, q); 
6.   } /* method foo */
7.   void bar(A p1) { . . . }
8.   void foobar(A p2) { . . . }
9. } /* class A */

10. class B extends A {
11.   void bar(A p3) {
12.      // p3’s pointee doesn’t escape
13.      p3.f = new A(); // O13
14.      p3.foobar(p3.f); 
15.   } /* method bar */
16.   void foobar(A p4) { . . . } 
17. } /* class B */
18. class C extends A { . . . }

O13 marked as Escaping.
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1. class A {
2.   void foo() {
3.      . . .
4.      z.bar(x);
5.      r.foobar(p, q); 
6.   } /* method foo */
7.   void bar(A p1) { . . . }
8.   void foobar(A p2) { . . . }
9. } /* class A */

10. class B extends A {
11.   void bar(A p3) {
12.      // p3’s pointee doesn’t escape
13.      p3.f = new A(); // O13
14.      p3.foobar(p3.f); 
15.   } /* method bar */
16.   void foobar(A p4) { . . . } 
17. } /* class B */
18. class C extends A { . . . }

Inline
x

₹

p3

foo

bar

On

O13

Callee object on caller’s stack frame

f

f

A.foo() [ . . ] [4,B.bar(p3),{O13}]
inlining_cond
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3. Method Inlining



A::foo() [Direct_Allocation]   [polymorphic_cond] [branching_cond]  [inlining_cond]

ConditionalDirect

Statically generated results

JVM

JIT
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Algorithm in the JIT Compiler

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. Polymorphic Callsite
for each O in JIT_identified_objects(m): 
 

     (CHm[c] ⊆ SAm[O][c]) ∨ ( ∀t ∈ SAm[O][c] Σ CPm(t) > ST) 

2. Branching Conditions

for each O in JIT_identified_objects(m): 
 

        (∀ b ∈ SAm[O][br] with Σ BPm(b) > ST) 
St

at
ic

 R
es

O

α, β 

CH
Ta

bl
e

α
c

Pr
of

ile val1α
β val2

St
at

ic
 R

es b1,b2 

O Pr
of

ile val1b1

b2 val2
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Algorithm in the JIT Compiler

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

3. Inlining Conditions

for each callsite c ∈ CallSitesm: 
    Callersc = SAm[c] 
    if ∃ n such that (n ∈ ITm[c] ∧ n ∈ Callersc): 
        Ostatic = statically_marked_objects(m) 
        mark all O ∈ Ostatic

St
at

ic
 R

es

O1

c,<m>

O2 On

<m>IT
ab

le c
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All speculative conditions make noticeable contributions.
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Performance Improvement: 6.7% 
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Performance Improvement



• Overall,	one	of	the	Lirst	approaches	that	strike	a	balance	between	static	analysis	and	JIT	
speculation,	harnessing	the	best	of	both	the	worlds.

• Enriched	the	static	analysis	with	possibility	of	speculation	at	run-time.	
• Mechanism	in	the	JIT	compiler	to	incorporate	the	conditional	static	analysis	results.	

Precise Escape

Analysis Results
.res file

More Capable

JIT (SMC+ SMI

+ SBE)

OpenJ9

Soot

+

Enriched Static Analysis

Conditional Stack

Allocation Results

Thank You !!
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CoSSJIT:    Take Aways


