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Compilation in Programming Languages

* Languages like C, C++:

» Use static compilers (gcc, g++).
* Generate executable which can be directly executed on machine.

» Optimizations performed will be based on statically available information.

* Languages like Java, C# and Scala:

* First get compiled by a static compiler.

* Compiled output is passed to a managed runtime for further execution.
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Program Translation in Java
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* Dynamic: Interpreter and JIT compiler

o Static: Javac generates bytecode.
5 Y generate the final output.
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Program Translation in Java
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o Static: Javac generates bytecode.
5 Y generate the final output.
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Objectsin Java

Managed runtime for Java allocates all objects on the heap.

Unused objects automatically freed up by garbage collector.

« A a = new AQ; // On heap

Benefits:

* Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

Challenges:
* Access time is high.

* Garbage collection is an overhead.
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Stack Allocation

* Memory allocated on stack:
 |.ess access time.

* Get freed up as soon as the allocating method returns.

| Escape Analysis

* Determines the set of objects that do not escape the allocating method.

* In case of Java:
* Escape analysis is performed: Just-in-time (JI'T) compilation — Imprecise

* Very few objects get allocated on stack.

A
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Staged Static + Dynamic Analysis

 |dea: Staged Static+Dynamic analysis for Managed Runtimes.
* Offload the costly analysis to static time.
* Perform precise (context-, flow-, field-sensitive) escape analysis ahead of time.

» Use analysis results in the JIT to enable additional optimizations.

 Statically generated escape analysis result to|loptimistically|allocate objects on

stack at run-time.
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Challenges with Static Analysis

* Challenges:

* Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement
(HCR) allows code changes.

* An object that was stack allocated based on static-analysis results, might
start escaping at run-time.

How to safely allocate objects on stack in a managed runtime?
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Motivating Example

1. class A { 11. void zar(A p, Ag) { . . .}
2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = p2;

4. A x =new AQ; // 0. |14. } /* method bar */

5. Ay =new AQQ; // O0s |[15. } /* class A */

o. x.f = new AQ); // O¢

/. Ap=x.T;

8. bar(p, y);

9. r.zar(p, q);

10. } /* method foo */

v
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2. AT 12.  void bar(A p1, A p2) { E
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Motivating Example

1. class A { 11. void zar(A p, A g) { . . } £00

2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.T = p2;

4. A x =new AQ; // 0. |14. } /* method bar */ £ > 04
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Motivating Example
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Motivating Example
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2. A f; 12. void bar(A p1, A p2) {
3.  void foo(A g, A r) { 13. p1.f = pz; §

X » (4
4, A x =new AQ; // 0. |14. } /* method bar */
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Motivating Example

1. class A {

2. A f;

3. void foo(A g, A r) {

4. A X =new AQ; // Ou
5. Ay =new AQ); // Os
o. x.f = new AQ); // O¢
/. Ap=x.f;

8. bar(p, y);

9.

r.zar(p, q);
10. } /* method foo */
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11. void zar(A p, Aqg) { . . .}é
12.  void bar(A p1, A p2) { '
13. p1.f = p2;
14. 3} /* method bar */ £
15. } /* class A */
p
Yy
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Motivating Example

1. class A { 11. void zar(A p, A g { . . } £00
2. A f; 12. void bar(A p1, A p2) { .
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X - Oy

4, A x =new AQ; // 0. |14. } /* method bar */ E
5. Ay =new AQ); // 0s |15. } /* class A */ ‘f
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Motivating Example

1. class A { 11. void zar(Ap, Aqgq) {1 . . } £00
2. A f; 12. void bar(A p1, A p2) { .
3. void foo(A g, A r) { 13. p1.f = p2;

X - Oy
4, A x =new AQ; // 0. |14. } /* method bar */ E
5. Ay =new AQQ; // 0s |15. } /* class A */ é 4;
0. x.t = new AQ; /7 Oc 16. class B extends A D - 06
. Ap=x.t; 17. void zar(A p, A g) { E £
9. r'.zar'(P, q}; 19 . } /* method zar */ y - 05
10. } /* method foo */ 5

20. } /* class B */

Dynamically
15 loaded
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Motivating Example

1. class A { 11. void zar(Ap, Aqg) { . . .}é EREE

2. 12. void bar(A pi, A p2) { @_>

3. void foo@ A { 13. p1.f = po; f00

4 new AQ):  // 0. |14. 3} /* method bar */

5. Ay =new AQQ; // Os ||15. } /* class A */ @‘_>O4 f
6. X.f = new AQ; /7 0O 16. class B extends A &C

/. Ap=x.f; 17. void zar(A p, A.{ @—POG/
8. bar(p, y); 18 q.f = g ‘;

9

20. } /* class B */

‘ r.zar(p, (@) 19.  } /* method zar */ 5
10. } /* method foo */ E 5

Dynamically
loaded
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Motivating Example

class A { 11. void zar(A p, Ag) { . . } : ey

1.
> 12. void bar(A p1, A pz2) { +oo
3. vold Foo@ Ar){ 13. p1.t = pz; @-——>04 f
4 . new ACQ); // 0. |14. + /* method bar */ #c
5. Ay =new AQ); // 0s |15. } /* class A */ C /
0. x.f = new AQ); // O 16. class B extends A D8
/. Ap=Xx.tT; 17. void zar(A p, ﬂ.{ ‘f
8. bar(p, y); 18 q.f = @—»Os
9. r.zar‘(p,; 19. } /* method zar */ _ /'
10. } /* method foo */ 20. + /* class B */ Incorrect
allocation on
stack
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HCR Example

1. class A { 11 void bar(A p1, A p2) { 5 :::;f Sy

: 7 OO0
A ‘F, 12 . pl.'F = p2; OO0

2.
3. vold foo Ar){ 13. } /* method bar */ ;
. X 4\t

4. A x = new AQ; // 0, 14. void zar(A p, d f
5. Ay =new AQ; // Os #15. q.t = p;

10.
0. x.f = new AQQ; // O¢ s @’

17. } /* class A */ E I; 6
/. Ap=x.T; L
8. bar(p, ¥); § 0O
9. r.zar(p, vV ) p O
10. } /* method foo */ orrect

allocation on
stack

PLATO
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Dynamic Heapification
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Heapification

q
L/
[

How to identify the need for heapification?

Heapificapton Checks
S

foo * Return of references. (Byte code: return.)

i

* References stores. (Byte code: putfield, putstatic, aastore.)

- * Throwing of exception. (Byte code: athrow.)

i,

 Calls to native. (Byte code: putObject, putObjectOrdered, putObjectVolatile.)

* INI'APIs used to perform stores in called C/C++ code. (Byte code: setObjectField. )

23
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Checking the Need for Heapification

1 Procedure HeapificationCheckAtStore(1hs, rhs)

2
3

4

24

if (rhs object is outside stack bounds)then
| No heapification required.

else
/* The rhs object is present on the stack */
if (lhs object is outside stack boundsthen
| Heapity starting from the rhs object.
else
/* Both lhs and rhs objects are on the stack */

| Heapify the rhs object.
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lhs_obj rhs_obj

rhs_obj >= lhs_obj

if (lhs object has longer life time than rhs object)then




Scenarlos at Store Statement
. class T {

T f- m1l O, allocated here|m1 |0 allocated here |ml

void m1() {m2(C. . .);}g

' .+ m2|0,; allocated here |m2|0, allocated here|m2 O, and Oy both
vord me() m3C. . °>’}§ allocated here

a.f = b; m3 a.f=Db maJ af=D>Db ma3 a.f=>

Y /* method m3 */

.+ /* class T */ | Clase-1 | | (lase-2 | : Case-3 .
-~ Op escapes Oy doesn’t escape Oy doesn’t escape:

Stack Walk — Costly
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1
2
3
4
5. void m3(T a, T b) {
6
/
3
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Ordering Objects on Stack




Ordering Objects on Stack

* A simple address-comparison check works majority of times.

 Statically create a partial order of stack-allocatable objects.

ml
O—Voa—f>ob

m2| O, and Op both
allocated here

[Ob, Oa]

¢ Use the stack-order in VM to re-order the list of stack
m3 af=b ~ allocated objects.

» Reduces cost of heapification checks.

. Case-3 -« Incase of cycles — result will not be valid only for one
Op doesnt escape’ 1 grore statement. Stack Walk

26
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Implementation and Evaluation

* Implementation:

Static analysis

y 4

y 4
»oot

 Benchmarks:

* DaCapo benchmark suites:
(23.10-chopin and 9.12 MRI)

Runtime components:

JO * SPECjvm 2008

 Evaluation schemes:

* BASE: Stack allocation with the existing

JIT scheme.

* OPT: Stack allocation with our

 Compute:
* Enhancement in stack allocation.

* Impact on performance and garbage
collection.

optimistic scheme.
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Evaluation (Stack Allocation)

Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)
Benchmark| Static Count | Dynamic Count | Stack Bytes | Static Count | Dynamic Count| Stack Bytes
graphchi 0 (0.0 %) OM (0.00%) OMB 32 (4.15%) 506.3M (6.9%) 9184.6MB
fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB
h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) | 452M (13.92%) 10801MB
luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB
lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB
pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) | 105M (14.2%) 2465MB
compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) | 105M (6.17%) 2329MB
rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB
signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB
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Evaluation (Stack Allocation)
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Garbage Collection
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Garbage Collection
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CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers




Garbage Collection

© BASE ® OPT

W BASE m OPT 40000 — “ BASE @ OPT 30000 T 55509
3000 — 2995
30466

) @ 30000 ~0140 o

O

@ 2 20000
S 2000 S S 17223 17150
) O 20000 o
8 % 9 1179011830
S 1000 G < 10000
- 2 10000 S
Z
0 x 2 m” pet ~ GC CF/ '
e X 2X 3X DEF
Max Heap (MB) Fewe r @yagtes o Max Heap (MB)
compiler graphchi
f N f
W BASE m OPT BASE PT -
- . S m O 6000 5208 1 BASE = OPT
4000 47556 47547
50000 4752747298

7p]
» 3000 + S
8 g 40000 G 4000
> S 3
5 &> 30000 O
O 2000 + O O
O O 20000 S 2000
5 1000 1903 989 - 3
9 682 ¢76 S 10000

389 388
0 - 0 0

2X
Max Heap (MB)

h?2

3X DEF

Max Heap (MB)

lusearch

DEF

2X 3X
Max Heap (MB)

pmd

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




31

More in Paper

PLDI 24

Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India
PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India
MANAS THAKUR, Indian Institute of Technology Bombay, India

The runtimes of managed object-oriented languages such as Java allocate objects on the heap, and rely on
automatic garbage collection (GC) techniques for freeing up unused objects. Most such runtimes also consist
of just-in-time (JIT) compilers that optimize memory access and GC times by employing escape analysis: an
object that does not escape (outlive) its allocating method can be allocated on (and freed up with) the stack
frame of the corresponding method. However, in order to minimize the time spent in JIT compilation, the
scope of such useful analyses is quite limited, thereby restricting their precision significantly. On the contrary,
even though it is feasible to perform precise program analyses statically, it is not possible to use their results
in a managed runtime without a closed-world assumption. In this paper, we propose a static+dynamic scheme
that allows one to harness the results of a precise static escape analysis for allocating objects on stack, while
taking care of both soundness and efficiency concerns in the runtime.
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Implementation of opcodes for
statements that can cause an object
to escape, across JIT & interpreter.

Simulating longer runs of benchmarks
with forced JI'T compilation.

Analyzing allocation sites that lead to
high number of allocations.

Cost of heapification.

Oftline cost.
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To summarize and Moving Ahead

 Fallback as heapification allowed us to maintain functional correctness due to the
dynamism offered by the Language/VM

* Overall, one of the first approaches to soundly and efficiently use static (offline)
analysis results in a JIT compiler!

Is this the best we can do for stack allocation?

Can we go more aggressive?
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All these works use AOT-analysis
results to perform optimizations in
JIT Compilers.
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Speculative Optimization in JIT Compilers

* Profile Information:

Standard Speculative Optimizations

* Basic invocation, loop invariant values. Conservative Fallback

* Type profiles at type-cast statements and polymorphic callsites.

e Branchinformation,instance ofbchecks.

How-can-we getthe best of static analysis and run-time information ??
* ‘DynamicCiassHierarchy:

* Information about loaded subclasses of a given class during execution.

* Inlining Table:

* Information about the list of methods inlined at various callsites.

34
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CoSSJIT: Combining Static Analysis and

Speculation in JIT Compilers

e |dea:

* Enrich Static Analysis results with possibility of speculation at run-time.

* Enable the JIT Compiler to perform speculative optimization based on the

static analysis results.
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1. Polymorphic Callsites

1. class A {
2. static A global;

4. void foo(A z) {

5. A x = new AQ); // Os
o Ay =new AQ; // 0Os
/ x.f = new AQ); // 07

----------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------

15. } /* method foo
16. } /* class A */

{'17. class B extends A {
[18.  void bar(A p) { . . .}

PLATO

----------------------------------------------------------------------------------------
P ~

~ -
........................................................................................

--------------------------------------------------------------------------------------
- ~

{KZQ. class C extends A {
[21.  void bar(A p3) {

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

.
---------------------------------------------------------------------------------------

1B, C } —[O:] [O-] [Escaping]
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1. Polymorphic Callsites

-------------------------------------------------------------------------------------
4 ~

1. class A { {17 class B extends A {
S E 18. void bar(A p2) { . . .}
4. id foo(A i
void too(A 2) 1 .[19. } /* class B */ ;
5. A X =new AQ); // Os PP ~%
c Ay = new AQ): // Oe é 20. clas§ C extends A { ;
/. x.f = new AQ; // 07 E,%%f --------- Yg}qugfgéAPéqmi ------------------------------ \E
122 global = ps; Escapes |
14 2. bar(x): 3. ¥
15. L /* method foo * %ﬁlm} ---------------------------------------------------------------------------
16. } /* class A */ At runtime:
polymorphic_cond| - Class Hierarchy (CHTable): C is not loaded.
Afoo()[..]1[z_14, {B},{0s, O7}] - Most of the times z is of type “B”.

37
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2. Branching

1. class A {

5. void foo(A pl) {
0. Ay =new AQ; // 0Os

9. 1f(pl 1nstance A) {

n: —> Og¢ (Escaping)

15. y.f = pl;

16. t /* method foo */

PLATO
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2. Branching

1.

11.
13.
14.
15.
16.

class A {
void foo(A pl) {
Ay =new AQ); // 0Og
if(pl instance A) { At runtime:
- The “it” branch is taken most
1 else { number of times.
global = y;
branching_cond
y.f = pl; Afoo()[..]1[9,{06}]
+ /* method foo */
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5. Method Inlining

1. class A { 10. class B extends A {

2. void foo() { 11. void bar(CA p3) {

3. 12.

4, z.bar(x); 13. p3.f = new AQ);

5. r.foobar(p, q); 14 . p3.foobar(ps.f);

0. t /* method foo */ 15. }

/7. volid bar(A p1) { . . . } 16. void foobar(A ps) { . . . }
8. void foobar(A p2) { . . . } 17. } /* class B */

9. } /* class A */ 18. class C extends A { . . . }

0.3 marked as Escaping.
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5. Method Inlining

10. class B extends A {
11. void bar(A ps3) {

' 12.
1. class A { Inline
13. f = AC);
2. void foo() { = newAC:
14 . p3.foobar(ps.f);
> On 15
..................................................... , n .
4. 7 z.bar(x);: ' f<“ - } :
| 1dCallee object on caller’s stack frame
5. r.foobar(p, q); k
\ ’ 17. } /* cl B */
6. } /* method foo */ . \f : S
N r—1118. cl C extends A Co.
/. void bar(A p1) { . . bar P ’()g' —_— —— { }
8. void foobar(A p2) { . . - g inlining_cond
9. } /* class A */ Afoo()[..1[4,B.bar(ps),{013}]
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Summary

Conditional

A::foo() [Direct_Allocation] [polymorphic_cond] [branching_cond] [inlining_cond]

- VM|

Statically generated results

i
/
%05

\_ /
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Algorithmin the JIT Compiler
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1. Polymorphic Callsite

for each 0 in JIT _identified _objects(m):

------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------

] SAm[O] [c] ) ( vVt € SAn[O] [c] Z CPn(t) > ST)
\ \,/l | ;
O £ I - L U R (N .
5 < 1% B 2 ofival:
- 2 o | plivts
O 3 a® vdaiz;
/ \ J y

2. Branching Conditions

for each 0 in JIT identified objects(m):

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
*

------------------------------------------------------------------------------------------------ r-------------------------..----.-’5
) I
N [mmmmmman , EEEEE
\&’ b1,b2 ; & ] LECTE
2 _____ o ::.'.'.'.'.:
5| 1o £ |@a¥@.'%_=
Q| Y Y
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Algorithmin the JIT Compiler

44

~
N EC’<m> I
3. Inlining Conditions % ...........
S [oioiion
\_ J
for each callsite C/E CallSitesm:
Callersc = SAm|[c] ~
if 3 n such that (n € ITm[c] A n € Callersc): | |= i
—» S| L w.. _
Ostatic = statically_marked_objects(m) = <qn>j
(mark all 0 € Ostatic) g
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Contributions by different Speculative Conditions

¥ Branching Inlining B PolyCall Unconditional BaselLine
400 T
347
300 =g
254
24 13
| | | | | |
All speculative conditions make noticeable contributions.
200 T 105 6a
T 152 166 .
12
o IR e 1 81
100 12 20 - 84 25 5
10 —_— —_—
121 14 39 32
74 100 81 89 40 93
53 61
) 19 19 30
graphchi sunflow xalan fop zXxing luindex lusearch h2 compiler
Benchmarks
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Performance Improvement
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CoSSJIT: Take Aways

* Enriched the static analysis with possibility of speculation at run-time.

®* Mechanism in the JIT compiler to incorporate the conditional static analysis results.

Enriched Static Analysis 500t
Precise Escape More Capable
Analysis Results JIT (SMC+ SMI
reslfile o
+ SBE)

Conditional Stack
Allocation Results

OpenJ9

* Overall, one of the first approaches that strike a balance between static analysis and JIT

speculation, harnessing the best of both the worlds.

Thank You !!
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