Precision without Regret:
Optimistic Stack Allocation 1n
JIT Compilers

Aditya Anand
Advisor: Prof. Manas Thakur
Indian Institute of Technology Bombay

11th February 2026



Compilation in Programming Languages

* Languages like C, C++:

» Use static compilers (gcc, g++).
* Generate executable which can be directly executed on machine.

» Optimizations performed will be based on statically available information.

* Languages like Java, C# and Scala:

* First get compiled by a static compiler.

* Compiled output is passed to a managed runtime for further execution.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



Program Translation in Java

STATIC DYNAMIC

JVM

Interpreter

»Final Qutput

JIT Compiler(s)

|
I

|

|

|

|

|

|

Java Code » Javac Compiler »Java Bytecode!
~ |

I

|

|

|

|

|

|

* Dynamic: Interpreter and JIT compiler

o Static: Javac generates bytecode.
5 Y generate the final output.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Program Translation in Java

JIT Compiler(s)

IR
ByteCode > i »NativeCode
@t imizations
Object Allocation

* Dynamic: Interpreter and JIT compiler

o Static: Javac generates bytecode.
5 Y generate the final output.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Objectsin Java

Managed runtime for Java allocates all objects on the heap.

Unused objects automatically freed up by garbage collector.

« A a = new AQ; // On heap

Benefits:

* Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

Challenges:
* Access time is high.

* Garbage collection is an overhead.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



Stack Allocation

* Memory allocated on stack:
 |.ess access time.

* Get freed up as soon as the allocating method returns.

| Escape Analysis

* Determines the set of objects that do not escape the allocating method.

* In case of Java:
* Escape analysis is performed: Just-in-time (JI'T) compilation — Imprecise

* Very few objects get allocated on stack.

A

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



Staged Static + Dynamic Analysis

 |dea: Staged Static+Dynamic analysis for Managed Runtimes.
* Offload the costly analysis to static time.
* Perform precise (context-, flow-, field-sensitive) escape analysis ahead of time.

» Use analysis results in the JIT to enable additional optimizations.

 Statically generated escape analysis result to|loptimistically|allocate objects on

stack at run-time.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Challenges with Static Analysis

* Challenges:

* Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement
(HCR) allows code changes.

* An object that was stack allocated based on static-analysis results, might
start escaping at run-time.

How to safely allocate objects on stack in a managed runtime?

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Motivating Example

1. class A { 11. void zar(A p, Ag) { . . .}
2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = p2;

4. A x =new AQ; // 0. |14. } /* method bar */

5. Ay =new AQQ; // O0s |[15. } /* class A */

o. x.f = new AQ); // O¢

/. Ap=x.T;

8. bar(p, y);

9. r.zar(p, q);

10. } /* method foo */

v

PLATO Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Motivating Example

1. class A { 11. void zar(Ap, A g { . . } £00

2. AT 12.  void bar(A p1, A p2) { E

3. void foo(A g, A r) { 13. 01.f = p2;

Z, AXx=new ACQ); // 04 |14. } /* method bar */ @ » O
5. Ay =new AQQ; // Os ||15. } /* class A */

o. x.f = new AQ); // O¢

/. Ap=x.f;

8. bar(p, y);

9.

r.zar(p, q);
10. } /* method foo */

8

PLATO Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Motivating Example

1. class A { 11. void zar(A p, A g) { . . } £00

2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.T = p2;

4. A x =new AQ; // 0. |14. } /* method bar */ £ > 04
5. Ay =new AQQ; // Os |15. } /* class A */

o. x.f = new AQ); // O¢

/. Ap=x.T;

3. bar(p, y); ;

9. r.zar(p, q); ;

10. } /* method foo */ @ > 05

9

PLATO Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Motivating Example

1. class A { 11. void zar(Ap, A g { . . } f00

2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = p2;

4, AXx=new AQ); // 04 |14. } /* method bar */ E £ > Oy
5. Ay =new AQ); // 0Os |15. } /* class A */ *f
6. x.f = new AQ); // 0. 5

/. Ap = x.f; Og
8. bar(p, y); ;

9. r.zar(p, q); 5

10. 1} /* method foo */ @ > Os

10

PLATO Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Motivating Example

1. class A { 11. void zar(A p, Aq) { . . } £00
2. A f; 12. void bar(A p1, A p2) {
3.  void foo(A g, A r) { 13. p1.f = pz; §

X » (4
4, A x =new AQ; // 0. |14. } /* method bar */
5. Ay =new AQQ; // Os ||15. } /* class A */ ¢f
6. x.f = new AQ; // O § ~
8. bar(p, ¥); §
9. r.zar(p, q), 5
10. } /* method foo */ 5

PLATO

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



Motivating Example

1. class A {

2. A f;

3. void foo(A g, A r) {

4. A X =new AQ; // Ou
5. Ay =new AQ); // Os
o. x.f = new AQ); // O¢
/. Ap=x.f;

8. bar(p, y);

9.

r.zar(p, q);
10. } /* method foo */

12

11. void zar(A p, Aqg) { . . .}é
12.  void bar(A p1, A p2) { '
13. p1.f = p2;
14. 3} /* method bar */ £
15. } /* class A */
p
Yy

P Lr_//_&T () Precision without Regret: Optimistic Stack Allocation in JIT Compilers

foo




Motivating Example

1. class A { 11. void zar(A p, A g { . . } £00
2. A f; 12. void bar(A p1, A p2) { .
3. void foo(A g, A r) { 13. p1.f = p2;
X - Oy

4, A x =new AQ; // 0. |14. } /* method bar */ E
5. Ay =new AQ); // 0s |15. } /* class A */ ‘f
6. x.f = new AQ; // 0O : ~
/. Ap=x.f; P > Ve
8. bar(p, y); ‘f
9. r.zar(p, q); 5

- (y » Os
10. } /* method foo */

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Motivating Example

1. class A { 11. void zar(Ap, Aq) { . . } £00
2. A f; 12. void bar(A p1, A p2) { .
3. void foo(A g, A r) { 13. p1.f = p2;
X - Oy

4, A x =new AQ; // 0. |14. } /* method bar */ E
5. Ay =new AQQ; // 0s |15. } /* class A */ ‘f
6. x.f = new AQ; // 0Os : ~
/. Ap=x.T, P » Usg
8. bar(p, y); ‘f
9. r.zar(p, q); Stack Allocate

04 Osand O LY > O5
10. } /* method foo */ 4, U5 ald Ve

14

P Lr_//_&T () Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Motivating Example

1. class A { 11. void zar(Ap, Aqgq) {1 . . } £00
2. A f; 12. void bar(A p1, A p2) { .
3. void foo(A g, A r) { 13. p1.f = p2;

X - Oy
4, A x =new AQ; // 0. |14. } /* method bar */ E
5. Ay =new AQQ; // 0s |15. } /* class A */ é 4;
0. x.t = new AQ; /7 Oc 16. class B extends A D - 06
. Ap=x.t; 17. void zar(A p, A g) { E £
9. r'.zar'(P, q}; 19 . } /* method zar */ y - 05
10. } /* method foo */ 5

20. } /* class B */

Dynamically
15 loaded

P Lr_//_&T () Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Motivating Example

1. class A { 11. void zar(Ap, Aqg) { . . .}é EREE

2. 12. void bar(A pi, A p2) { @_>

3. void foo@ A { 13. p1.f = po; f00

4 new AQ):  // 0. |14. 3} /* method bar */

5. Ay =new AQQ; // Os ||15. } /* class A */ @‘_>O4 f
6. X.f = new AQ; /7 0O 16. class B extends A &C

/. Ap=x.f; 17. void zar(A p, A.{ @—POG/
8. bar(p, y); 18 q.f = g ‘;

9

20. } /* class B */

‘ r.zar(p, (@) 19.  } /* method zar */ 5
10. } /* method foo */ E 5

Dynamically
loaded

PLATO Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Motivating Example

class A { 11. void zar(A p, Ag) { . . } : ey

1.
> 12. void bar(A p1, A pz2) { +oo
3. vold Foo@ Ar){ 13. p1.t = pz; @-——>04 f
4 . new ACQ); // 0. |14. + /* method bar */ #c
5. Ay =new AQ); // 0s |15. } /* class A */ C /
0. x.f = new AQ); // O 16. class B extends A D8
/. Ap=Xx.tT; 17. void zar(A p, ﬂ.{ ‘f
8. bar(p, y); 18 q.f = @—»Os
9. r.zar‘(p,; 19. } /* method zar */ _ /'
10. } /* method foo */ 20. + /* class B */ Incorrect
allocation on
stack

P Lr_//_&T () Precision without Regret: Optimistic Stack Allocation in JIT Compilers




HCR Example

1. class A { 11 void bar(A p1, A p2) { 5 :::;f Sy

: 7 OO0
A ‘F, 12 . pl.'F = p2; OO0

2.
3. vold foo Ar){ 13. } /* method bar */ ;
. X 4\t

4. A x = new AQ; // 0, 14. void zar(A p, d f
5. Ay =new AQ; // Os #15. q.t = p;

10.
0. x.f = new AQQ; // O¢ s @’

17. } /* class A */ E I; 6
/. Ap=x.T; L
8. bar(p, ¥); § 0O
9. r.zar(p, vV ) p O
10. } /* method foo */ orrect

allocation on
stack

PLATO

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



Dynamic Heapification




19

Heapification

Stack

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




20

foo

bar

Heapification

Stack

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




21

foo

bar

Heapification

Stack

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




22

foo

bar

Heapification

Stack

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Heapification

q
L/
[

How to identify the need for heapification?

Heapificapton Checks
S

foo * Return of references. (Byte code: return.)

i

* References stores. (Byte code: putfield, putstatic, aastore.)

- * Throwing of exception. (Byte code: athrow.)

i,

 Calls to native. (Byte code: putObject, putObjectOrdered, putObjectVolatile.)

* INI'APIs used to perform stores in called C/C++ code. (Byte code: setObjectField. )

23

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Checking the Need for Heapification

1 Procedure HeapificationCheckAtStore(1hs, rhs)

2
3

4

24

if (rhs object is outside stack bounds)then
| No heapification required.

else
/* The rhs object is present on the stack */
if (lhs object is outside stack boundsthen
| Heapity starting from the rhs object.
else
/* Both lhs and rhs objects are on the stack */

| Heapify the rhs object.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

/

lhs_obj rhs_obj

rhs_obj >= lhs_obj

if (lhs object has longer life time than rhs object)then




Scenarlos at Store Statement
. class T {

T f- m1l O, allocated here|m1 |0 allocated here |ml

void m1() {m2(C. . .);}g

' .+ m2|0,; allocated here |m2|0, allocated here|m2 O, and Oy both
vord me() m3C. . °>’}§ allocated here

a.f = b; m3 a.f=Db maJ af=D>Db ma3 a.f=>

Y /* method m3 */

.+ /* class T */ | Clase-1 | | (lase-2 | : Case-3 .
-~ Op escapes Oy doesn’t escape Oy doesn’t escape:

Stack Walk — Costly

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

1
2
3
4
5. void m3(T a, T b) {
6
/
3

25




Ordering Objects on Stack




Ordering Objects on Stack

* A simple address-comparison check works majority of times.

 Statically create a partial order of stack-allocatable objects.

ml
O—Voa—f>ob

m2| O, and Op both
allocated here

[Ob, Oa]

¢ Use the stack-order in VM to re-order the list of stack
m3 af=b ~ allocated objects.

» Reduces cost of heapification checks.

. Case-3 -« Incase of cycles — result will not be valid only for one
Op doesnt escape’ 1 grore statement. Stack Walk

26

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



27

Implementation and Evaluation

* Implementation:

Static analysis

y 4

y 4
»oot

 Benchmarks:

* DaCapo benchmark suites:
(23.10-chopin and 9.12 MRI)

Runtime components:

JO * SPECjvm 2008

 Evaluation schemes:

* BASE: Stack allocation with the existing

JIT scheme.

* OPT: Stack allocation with our

 Compute:
* Enhancement in stack allocation.

* Impact on performance and garbage
collection.

optimistic scheme.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Evaluation (Stack Allocation)

Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)
Benchmark| Static Count | Dynamic Count | Stack Bytes | Static Count | Dynamic Count| Stack Bytes
graphchi 0 (0.0 %) OM (0.00%) OMB 32 (4.15%) 506.3M (6.9%) 9184.6MB
fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB
h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) | 452M (13.92%) 10801MB
luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB
lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB
pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) | 105M (14.2%) 2465MB
compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) | 105M (6.17%) 2329MB
rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB
signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



Evaluation (Stack Allocation)

Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)
Benchmark| Static Count | Dynamic Count | Stack Bytes | Static Count | Dynamic Count| Stack Bytes
graphchi 0 (0.0 %) OM (0.00%) OMB 32 (4.15%) 506.3M (6.9%) 9184.6MB
fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB
h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) | 452M (13.92%) 10801MB
luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB
lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB
pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) | 105M (14.2%) 2465MB
compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) | 105M (6.17%) 2329MB
rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB
signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



Evaluation (Stack Allocation)

Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)
Benchmark| Static Count | Dynamic Count | Stack Bytes | Static Count | Dynamic Count| Stack Bytes
graphchi 0 (0.0 %) OM (0.00%) OMB 32 (4.15%) 506.3M (6.9%) 9184.6MB
fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB
h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) | 452M (13.92%) 10801MB
luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB
lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB
pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) | 105M (14.2%) 2465MB
compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) | 105M (6.17%) 2329MB
rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB
signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



28

Evaluation (Stack Allocation)

Non Optimistic Scheme (BASE)

Optimistic Scheme (OPT)

Benchmark| Static Count | Dynamic Count | Stack Bytes | Static Count | Dynamic Count| Stack Bytes

graphchi 0 (0.0 %) OM (0.00%) OMB 32 (4.15%) 506.3M (6.9%) 9184.6MB
fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) | 452M (13.92%) 10801MB
luindex 35 (gt,@opk Auﬂ%jon : mf %&/opytgl§f3 56'_070 f 133MB
lusearch 30 (1.09%) 25M (Ji@)ﬁs HeﬂERHAI IOG@I@B) 59M (7.4%) 1686MB
pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) | 105M (14.2%) 2465MB
compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) | 105M (6.17%) 2329MB
rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB
signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




29

Performance

a U.597/70~ R a /00 - - E/?
© 0.350 - < 600 - Q _
3 Q | @ 30500
= Legend S L Legend S
q) O 325 - [ q) 500 o | 1 ®
g : BASE g ‘ \ : BASE g 30000 -
3 OPT e OPT S
GN) 0.300 - ' GNJ 400 - ' GN) ﬁ
@© @© © |
= = £ 29500 - -
S 0:erss — S 8007 ‘ 9 =
. g O .

compiler Performance Improvement: 8.8%1% aaonen
= : = 1025 - B oo
e % [®) o -
S 8000 - 1 S ——— ccp
O &) ’ o
3 B 1000 - B 525-
£ 7000 - Legend =] Legend =

1 1 520- |
= = BASE e e = BASE & —
5 6000 - — OPT o - OPT S 515-
G) ' q) T GJ
N ‘ N N
© T 950- T
£ 5000- £ g ~10 |
o %I O —— O
Z Z - Z o5 -
h2 lusearch pmd

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

Legend

BASE
OPT

Legend

BASE
OPT




Garbage Collection

© BASE ™ OPT 40000 T - BASE & OPT 30000 T 55500 @ BASE & OPT
3000 2995
30466
) o 30000 | 30140 )
O
5 < 20000
S 2000 S S 17223 17150
g QO 20000 + 8
3 o O 11790 11830
Y o
S : > 10000
S 1000 2 10000 + 9
Z
11771166
0 0 - 0 -
X 2X 3X Def DEF X 2X 3X DEF
Max Heap (MB) Max Heap (MB) Max Heap (MB)
compiler fop graphchi
BASE OPT _
3900 - O W BASE W OPT 6000 599 m BASE m OPT
4000 47556 47547
50000 T 47527 47298
0
o 3000 -+ Q@
% E 40000 o 4000
> C>{ O
3 3> 30000 Q
O 2000 -+ 0 D
O O 20000 S 2000
5 1000 1903 989 - 3
Z 682 676 2 10000
389 388
0 - 0 0
X 2X 3X DEF X 2X 3X DEF
Max Heap (MB) Max Heap (MB) Max Heap (MB)
30 h2 lusearch pmd

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Garbage Collection

. BASE & OPT
3000 - 2220

(dp)
()]
S 2000 -
>
@)
Q 1252
D 1286
“— 9905 985
5 1000 + 934 201
O
2.

O _

2X 3X Def
Max Heap (MB)

compiler

37

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers




Garbage Collection

© BASE ® OPT

W BASE m OPT 40000 — “ BASE @ OPT 30000 T 55509
3000 — 2995
30466

) @ 30000 ~0140 o

O

@ 2 20000
S 2000 S S 17223 17150
) O 20000 o
8 % 9 1179011830
S 1000 G < 10000
- 2 10000 S
Z
0 x 2 m” pet ~ GC CF/ '
e X 2X 3X DEF
Max Heap (MB) Fewe r @yagtes o Max Heap (MB)
compiler graphchi
f N f
W BASE m OPT BASE PT -
- . S m O 6000 5208 1 BASE = OPT
4000 47556 47547
50000 4752747298

7p]
» 3000 + S
8 g 40000 G 4000
> S 3
5 &> 30000 O
O 2000 + O O
O O 20000 S 2000
5 1000 1903 989 - 3
9 682 ¢76 S 10000

389 388
0 - 0 0

2X
Max Heap (MB)

h?2

3X DEF

Max Heap (MB)

lusearch

DEF

2X 3X
Max Heap (MB)

pmd

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




31

More in Paper

PLDI 24

Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India
PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India
MANAS THAKUR, Indian Institute of Technology Bombay, India

The runtimes of managed object-oriented languages such as Java allocate objects on the heap, and rely on
automatic garbage collection (GC) techniques for freeing up unused objects. Most such runtimes also consist
of just-in-time (JIT) compilers that optimize memory access and GC times by employing escape analysis: an
object that does not escape (outlive) its allocating method can be allocated on (and freed up with) the stack
frame of the corresponding method. However, in order to minimize the time spent in JIT compilation, the
scope of such useful analyses is quite limited, thereby restricting their precision significantly. On the contrary,
even though it is feasible to perform precise program analyses statically, it is not possible to use their results
in a managed runtime without a closed-world assumption. In this paper, we propose a static+dynamic scheme
that allows one to harness the results of a precise static escape analysis for allocating objects on stack, while
taking care of both soundness and efficiency concerns in the runtime.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers

Implementation of opcodes for
statements that can cause an object
to escape, across JIT & interpreter.

Simulating longer runs of benchmarks
with forced JI'T compilation.

Analyzing allocation sites that lead to
high number of allocations.

Cost of heapification.

Oftline cost.




32

To summarize and Moving Ahead

 Fallback as heapification allowed us to maintain functional correctness due to the
dynamism offered by the Language/VM

* Overall, one of the first approaches to soundly and efficiently use static (offline)
analysis results in a JIT compiler!

Is this the best we can do for stack allocation?

Can we go more aggressive?

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




33

Recent Works on Static + Dynamic Analysis

PYE: A Framework for Precise-Yet-Efficient Just-In-Time

Analyses for Java Programs

MANAS THAKUR and V. KRISHNA NANDIVADA, IIT Madras

TOPLAS 19

ZS3: Marrying Static Analyzers and Constraint Solvers to

Parallelize Loops in Managed Runtimes

CASCON 22
Rishi Sharma* Shreyansh Kulshreshtha® Manas Thakur
EPFL Publicis Sapient IIT Mandi

rishi-sharma@outlook.com shreyanshkuls@outlook.com

manas@iitmandi.ac.in

wse Optimistic Stack Allocation and Dynamic Heapification for

Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India
PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India
MANAS THAKUR, Indian Institute of Technology Bombay, India

®
Principles of Staged Static+Dynamic
Partial Analysis
Aditya Anand® and Manas Thakur®)
Indian Institute of Technology Mandi, Kamand, India
ud21002@students.iitmandi.ac.in, manas@iitmandi.ac.in

RESEARCH ")
Check for
updates

Partial program analysis for staged compilation systems

Aditya Anand’ - Manas Thakur' FMSD 24

Received: 30 April 2023 / Accepted: 16 May 2024 / Published online: 13 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

PLDI 24

All these works use AOT-analysis
results to perform optimizations in
JIT Compilers.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Speculative Optimization in JIT Compilers

* Profile Information:

Standard Speculative Optimizations

* Basic invocation, loop invariant values. Conservative Fallback

* Type profiles at type-cast statements and polymorphic callsites.

e Branchinformation,instance ofbchecks.

How-can-we getthe best of static analysis and run-time information ??
* ‘DynamicCiassHierarchy:

* Information about loaded subclasses of a given class during execution.

* Inlining Table:

* Information about the list of methods inlined at various callsites.

34

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



35

OOPSLA 25

CoSSJIT: Combining Static Analysis and

Speculation in JIT Compilers

e |dea:

* Enrich Static Analysis results with possibility of speculation at run-time.

* Enable the JIT Compiler to perform speculative optimization based on the

static analysis results.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




1. Polymorphic Callsites

1. class A {
2. static A global;

4. void foo(A z) {

5. A x = new AQ); // Os
o Ay =new AQ; // 0Os
/ x.f = new AQ); // 07

----------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------

15. } /* method foo
16. } /* class A */

{'17. class B extends A {
[18.  void bar(A p) { . . .}

PLATO

----------------------------------------------------------------------------------------
P ~

~ -
........................................................................................

--------------------------------------------------------------------------------------
- ~

{KZQ. class C extends A {
[21.  void bar(A p3) {

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

.
---------------------------------------------------------------------------------------

1B, C } —[O:] [O-] [Escaping]

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




1. Polymorphic Callsites

-------------------------------------------------------------------------------------
4 ~

1. class A { {17 class B extends A {
S E 18. void bar(A p2) { . . .}
4. id foo(A i
void too(A 2) 1 .[19. } /* class B */ ;
5. A X =new AQ); // Os PP ~%
c Ay = new AQ): // Oe é 20. clas§ C extends A { ;
/. x.f = new AQ; // 07 E,%%f --------- Yg}qugfgéAPéqmi ------------------------------ \E
122 global = ps; Escapes |
14 2. bar(x): 3. ¥
15. L /* method foo * %ﬁlm} ---------------------------------------------------------------------------
16. } /* class A */ At runtime:
polymorphic_cond| - Class Hierarchy (CHTable): C is not loaded.
Afoo()[..]1[z_14, {B},{0s, O7}] - Most of the times z is of type “B”.

37

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




2. Branching

1. class A {

5. void foo(A pl) {
0. Ay =new AQ; // 0Os

9. 1f(pl 1nstance A) {

n: —> Og¢ (Escaping)

15. y.f = pl;

16. t /* method foo */

PLATO

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



39

2. Branching

1.

11.
13.
14.
15.
16.

class A {
void foo(A pl) {
Ay =new AQ); // 0Og
if(pl instance A) { At runtime:
- The “it” branch is taken most
1 else { number of times.
global = y;
branching_cond
y.f = pl; Afoo()[..]1[9,{06}]
+ /* method foo */

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




5. Method Inlining

1. class A { 10. class B extends A {

2. void foo() { 11. void bar(CA p3) {

3. 12.

4, z.bar(x); 13. p3.f = new AQ);

5. r.foobar(p, q); 14 . p3.foobar(ps.f);

0. t /* method foo */ 15. }

/7. volid bar(A p1) { . . . } 16. void foobar(A ps) { . . . }
8. void foobar(A p2) { . . . } 17. } /* class B */

9. } /* class A */ 18. class C extends A { . . . }

0.3 marked as Escaping.

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



5. Method Inlining

10. class B extends A {
11. void bar(A ps3) {

' 12.
1. class A { Inline
13. f = AC);
2. void foo() { = newAC:
14 . p3.foobar(ps.f);
> On 15
..................................................... , n .
4. 7 z.bar(x);: ' f<“ - } :
| 1dCallee object on caller’s stack frame
5. r.foobar(p, q); k
\ ’ 17. } /* cl B */
6. } /* method foo */ . \f : S
N r—1118. cl C extends A Co.
/. void bar(A p1) { . . bar P ’()g' —_— —— { }
8. void foobar(A p2) { . . - g inlining_cond
9. } /* class A */ Afoo()[..1[4,B.bar(ps),{013}]

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



42

Summary

Conditional

A::foo() [Direct_Allocation] [polymorphic_cond] [branching_cond] [inlining_cond]

- VM|

Statically generated results

i
/
%05

\_ /

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




Algorithmin the JIT Compiler

43

1. Polymorphic Callsite

for each 0 in JIT _identified _objects(m):

------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------

] SAm[O] [c] ) ( vVt € SAn[O] [c] Z CPn(t) > ST)
\ \,/l | ;
O £ I - L U R (N .
5 < 1% B 2 ofival:
- 2 o | plivts
O 3 a® vdaiz;
/ \ J y

2. Branching Conditions

for each 0 in JIT identified objects(m):

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
*

------------------------------------------------------------------------------------------------ r-------------------------..----.-’5
) I
N [mmmmmman , EEEEE
\&’ b1,b2 ; & ] LECTE
2 _____ o ::.'.'.'.'.:
5| 1o £ |@a¥@.'%_=
Q| Y Y

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers




Algorithmin the JIT Compiler

44

~
N EC’<m> I
3. Inlining Conditions % ...........
S [oioiion
\_ J
for each callsite C/E CallSitesm:
Callersc = SAm|[c] ~
if 3 n such that (n € ITm[c] A n € Callersc): | |= i
—» S| L w.. _
Ostatic = statically_marked_objects(m) = <qn>j
(mark all 0 € Ostatic) g

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers




Contributions by different Speculative Conditions

¥ Branching Inlining B PolyCall Unconditional BaselLine
400 T
347
300 =g
254
24 13
| | | | | |
All speculative conditions make noticeable contributions.
200 T 105 6a
T 152 166 .
12
o IR e 1 81
100 12 20 - 84 25 5
10 —_— —_—
121 14 39 32
74 100 81 89 40 93
53 61
) 19 19 30
graphchi sunflow xalan fop zXxing luindex lusearch h2 compiler
Benchmarks

45

Precision without Regret: Optimistic Stack Allocation in JIT Compilers



Performance Improvement

— : — —~ 990 -
&) (&) &)
o D 270- 3
E 13000 - E E 980 -
— Legend — Legend — Legend
e L 265 - ® 970-
g . BaselLine g . BaselLine g . Baseline
@ 12000- B3 CossJT 5 B3 CossJT @ 960- B3 cossJiT
© S 260 - ©
£ £ £ 950-
S 11000 2 2
, , 940 - |
graphchi P f éuinon t 6 70/ fsearch
errormanc provement: 0./ %
= 5 3920~ —— S 12700 -
B 22500 - & %
E Legend E 7 Legend ;E; 12650~ Legend
) i ) |
E 22000 —— ' BaseLine g 3840 ' BaseLine E ' BaseLine
O (o) i O 12600 -
) CoSSJIT
8, B CossJIT 3 Bl CossJIT S =
© i © ©
= = 3800- = 12550- —
o 2 Z
sunflow xalan zXxing

46

P LKT () CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers




CoSSJIT: Take Aways

* Enriched the static analysis with possibility of speculation at run-time.

®* Mechanism in the JIT compiler to incorporate the conditional static analysis results.

Enriched Static Analysis 500t
Precise Escape More Capable
Analysis Results JIT (SMC+ SMI
reslfile o
+ SBE)

Conditional Stack
Allocation Results

OpenJ9

* Overall, one of the first approaches that strike a balance between static analysis and JIT

speculation, harnessing the best of both the worlds.

Thank You !!

Precision without Regret: Optimistic Stack Allocation in JIT Compilers




