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Brief Introduction

* Program Analysis and JIT (Just-In-Time) compilers for Java like languages.

* JITs prioritize fast decisions over precise analysis, resulting in conservative
optimization.

 Idea: Staged Static+Dynamic analysis for Managed Runtimes.
» Offload the costly analysis to static time.

* Use analysis results in the JIT to enable additional optimizations.
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Staged Analysis

* Optimization: Object Allocation Escape Analysis

* By default, objects in Java are allocated on the heap. |Indirection, Need GC

» Stack Allocation: Allocate method local objects on the stack frame. |Faster access, No GC

* Perform precise (context-, flow-, field- A

wee Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes

sensitive) escape analysis statically.
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Optimistic Stack Allocation

Can we always re]y on the Static I> Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes
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(DCL), HotCode Replacement MANAS THAKUR, ndln It of cisiogr Bombeg nts. ||

(HCR), Callbacks can make your

static analysis result go unsound.

We need to have a fallback mechanism Examp]e for Dynamic C]assLQading

to ensure functional correctness.
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Dynamic ClassLoading Example

1. class A { 11. void zar(A p, Ag) { . . .}
2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = p2;

4. A x =new AQ; // 0. |14. } /* method bar */

5. Ay =new AQQ; // O0s |[15. } /* class A */

o. x.f = new AQ); // O¢

/. Ap=x.T;

8. bar(p, y);

9.

r.zar(p, 4);
10. } /* method foo */
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Dynamic ClassLoading Example

1. class A { 11. void zar(Ap, Aq) { . . } £00

2. At 12. void bar(A p1, A p2) { :

3. void foo(A q, A r) { 13. p1.f = p2;

4. AXx=new AQD; // 04+ |14. } /* method bar */ @ > O
5. Ay =new AQQ; // 0Os |15. } /* class A */ 5

0. x.f = new AQ); // Os

/. Ap=Xx.f;

8. bar(p, y);

9.

r.zar(p, q);
10. } /* method foo */
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Dynamic ClassLoading Example

1. class A { 11. void zar(A p, A g) { . . } £00

2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = pz;

4. A x =new AQ; // 0. |14. } /* method bar */ £ > 04
5. Ay =new AQD; // Os |[15. } /* class A */

o. x.f = new AQ); // O¢

/. Ap=x.T;

3. bar(p, y); ;

9. r.zar(p, q); ;

10. } /* method foo */ @ > 05
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Dynamic ClassLoading Example

1. class A { 11. void zar(A p, A g { . . } £00
2. A f; 12. void bar(A p1, A p2) { .
3. void foo(A g, A r) { 13. p1.f = p2;

: X - Oy
4, A x =new AQ; // 0. |14. + /* method bar */ E
5. Ay =new AQ); // Os ||]15. } /* class A */ *f
6. x.f = new AQ; // 0. :

Os

/. Ap=x.f;
8. bar(p, y); E
9. r.zar(p, q); > O
10. } /* method foo */ Y °
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Dynamic ClassLoading Example

1. class A { 11. void zar(A p, Aq) { . . } £00

2. AT, 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = pz;

4. A x =new AQ); // O |14. } /* method bar */ E £ > Oy
5. Ay =new AQQ; // 0s |15. } /* class A */ ‘f
6. X.t = new AQ); // Os 5

/. Ap = x.f; P » Og
8. bar(p, y); :

9. r.zar(p, q); 5

10. } /* method foo */ y > Os
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Dynamic ClassLoading Example

1. class A { 11. void zar(A p, Aq) { . . } £00

2. AT, 12.  void bar(A p1, A p2) {

3. void foo(A q, A r) 1 13. p1.f = pz;

4. A x =new ACQ); // 0, |14. } /* method bar */ E < > Oy
5. Ay =new AQQ; // 0s |15. } /* class A */ ¢f
6. X.t = new AQ); // Os 5

/. Ap = x.f; P » Og
8. bar(p, y); :

9. r.zar(p, q); 5

10. 3} /* method foo */ y > Os
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Dynamic ClassLoading Example

1. class A { 11. void zar(Ap, A g { . . } f00

2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = pz;

4. A x =new ACQ); // 0, |14. } /* method bar */ E A » Oy
5. Ay =new AQ); // Os ||15. } /* class A */ ‘f
6. x.f = new AQ; // Oc 5

7. Ap = x.f; P » Og
8. bar(p, y); ‘f
9. r.zar(p, q); 5

10. 1} /* method foo */ Yy » Os

10
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Dynamic ClassLoading Example

1. class A { 11. void zar(Ap, Aq) { . . } £ o0

2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = p2;

4. A x =new ACQ); // O+ |14. } /* method bar */ E A » Oy
5. Ay =new AQ); // Os ||15. } /* class A */ ‘f
6. x.f = new AQ; // Oc 5

7. Ap = x.f; P » Og
8. bar(p, y); g ‘f
9. r.zar(p, q); 5

10. 1} /* method foo */ Yy » Os

11
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Dynamic ClassLoading Example

1. class A { 11. void zar(A p, A g { . . } £00
2. A f; 12. void bar(A p1, A p2) { :
3. void foo(A g, A r) { 13. p1.f = p2;
X » Oy

4, A x =new AQ; // 0. |14. + /* method bar */ E
5. Ay =new AQ); // Os ||]15. } /* class A */ ‘f
6. x.f = new AQ); // O. E 0
/. Ap=x.f; P > Ve
8. bar(p, y); ‘f
9. r.zar(p, qg); é O
10. } /* method foo */ Stack Allocate Y > s

04 Osand Oe

11
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Dynamic ClassLoading Example

1. class A { 11. void zar(A p, Ag) { . . } £00
2. A f; 12. void bar(A p1, A p2) {
3. void foo(A g, A r) { 13. p1.f = p2;
4. A x =new AQ); // O |14. } /* method bar */ E X » Oy
5. Ay =new AQ); // Os ||]15. } /* class A */ g
°. X.f = new AQ; /7 O 16. class B extends A D - O6
‘. Ap = X.f; 17. void zar(A p, A g) { ;
8. bar(p, y); SET ) q.f = p: ‘f
9. r.zar(p, 4); 19. 1 /* method zar */ v > O-
10. } /* method foo */ ; 20. ¥ /* class B */ 5

Dynamically
- loaded
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Dynamic ClassLoading Example

1.

O o0 ~N O O b W N

10.

class A {

vold foo<::§> Ar) {

new AQ); // Oa
Ay =new AQ); // Os
x.f = new AQ); // O¢
Ap=x.f;
bar(p, y);

r.zar(p, ;

} /* method foo */

11.
12.
13.
14.
15.

void zar(A p, A gq) { .
void bar(A pi, A p2) {
p1.T = p2;
} /* method bar */
+ /* class A */

16.
17.
18.
19.
20.

class B extends A
void zar(A p, @) 1
g.f =
} /* method zar */
} /* class B */
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Dynamic ClassLoading Example

1. class A {

2.

3. void foo@ A {

4. new AQ); // Oa
5. Ay =new AQ; // Os
o. x.f = new AQ); // O¢
/. Ap=x.T;

8. bar(p, y);

9.

r.zar(p, ;

10. } /* method foo */

14

11. void zar(A p, A g) { .
12. void bar(A p1, A p2) {
13. p1.T = p2;
14 . } /* method bar */
15. } /* class A */
16. class B extends A
17. void zar(A p, @) {
18. g.f =
19. t /* method zar */
20. } /* class B */
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Dynamic Heapification




Dynamic ClassLoading Example

1. class A {

2.

3. void foo@ A {

4. new AQ); // Oa
5. Ay =new AQ; // Os
o. x.f = new AQ); // O¢
/. Ap=x.T;

8. bar(p, y);

9.

r.zar(p, ;

10. } /* method foo */

14

11. void zar(A p, A g) { .
12. void bar(A p1, A p2) {
13. p1.T = p2;
14 . } /* method bar */
15. } /* class A */
16. class B extends A
17. void zar(A p, @) {
18. g.f =
19. t /* method zar */
20. } /* class B */
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Heapification

Stack
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Heapification

Stack

bar

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers




17

Heapification

Stack

foo

bar
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Heapification

Stack

foo

bar
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Heapification

Stack

foo

bar

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers




19

Heapification

How to identify the need for heapification?
Heapification Checks

* Return of references. (Byte code: return.)
* References stores. (Byte code: putfield, putstatic, aastore.)
* Throwing of exception. (Byte code: athrow.)

 Calls to native. (Byte code: putObject, putObjectOrdered, putObjectVolatile.)

» JNI APIs used to perform stores in called C/C++ code. (Byte code: setObjectField.)

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers
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Summary and Moving Ahead

 Fallback as heapification allowed us to maintain functional correctness due to the
dynamism offered by the Language/VM

* Overall, one of the first approaches to soundly and efficiently use static (offline)
analysis results in a JIT compiler!

Is this the best we can do for stack allocation?

Can we go more aggressive?

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers
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All these works use AOT-analysis
results to perform optimizations in
JIT Compilers.
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Speculative Optimization in JIT Compilers

22

* Profile Information:

* Basic invocation, loop invariant values.

Standard Speculative Optimizations

Conservative Fallback

* Type profiles at type-cast statements and polymorphic callsites.

* Branch information, instance of checks.

* Dynamic Class Hierarchy:

* Information about loaded subclasses of a given class during execution.

* Inlining Table:

* Information about the list of methods inlined at various callsites.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers




Speculative Optimization in JIT Compilers

How can we get the best of static analysis and run-time information ??

22
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OOPSLA 25

CoSSJIT: Combining Static Analysis and

Speculation in JIT Compilers

e |dea:

* Enrich Static Analysis results with possibility of speculation at run-time.

* Enable the JIT Compiler to perform speculative optimization based on the

static analysis results.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers
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1. Polymorphic Callsites

1. class A {
2. static A global;

4. void foo(A z) {

5. A x = new AQ); // 0Os
6 Ay =new AQ; // 0Os
/ x.f = new AQ); // 07

----------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------

15. } /* method foo
16. } /* class A */

{ 17. class B extends A {
[18.  void bar(A p) { . . .}

----------------------------------------------------------------------------------------
3 ~

~ -
........................................................................................

--------------------------------------------------------------------------------------
- ~

{'26. class C extends A {
(21 void bar(A p3) {

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

.
---------------------------------------------------------------------------------------

1B, C } —[O:] [O-] [Escaping]

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers




1. Polymorphic Callsites

-------------------------------------------------------------------------------------
ﬂ ~

25

1. class A { {17 class B extends A {
S E 18. void bar(A p2) { . . .}
4. id foo(A i
void too(A 2) 1 .[19. } /* class B */ ;
5. A X =new AQ); // Os PP ~%
c Ay = new AQ): // Oe é 20. clas§ C extends A { ;
/. x.f = new AQ; // 07 E,%%l --------- Y?}qugfgémPész ------------------------------ \E
122 global = ps; Escapes |
14 2. bar(x): 3. ¥
15. L /* method foo * gﬁlm} ---------------------------------------------------------------------------
16. } /* class A */ At runtime:
polymorphic_cond| - Class Hierarchy (CHTable): C is not loaded.
Afoo()[..]1[z_14, {B},{0s, O7}] - Most of the times z is of type “B”.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers
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2. Branching

1.

class A {

void foo(A pl) {
Ay =new AQ; // 0Os

1f(pl 1nstance A) {

n: —> Og¢ (Escaping)

y.t = pl;

t /* method foo */

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers
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2. Branching

1.

11.
13.
14.
15.
16.

class A {
void foo(A pl) {
Ay =new AQ; // 0Os
1f(pl 1nstance A) {
} else {
global = y;
y.t = pl;
t /* method foo */

At runtime:

. The “if” branch is taken most
number of times.

branching_cond

Afoo()[..1[9, {06}]
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5. Method Inlining

O 60 ~N O U1 H» W N -

. Class A {
void foo() {

Zz.bar(x);
r.foobar(p, q);
} /* method foo */
void bar(A p1) { .
void foobar(A p2) { .
.} /* class A */

10. class B extends A {
11. void bar(A p3) {
12.
13. p3.f = new AQ);
14 . p3.foobar(ps.f);
15. }
.} 16. void foobar(A ps) { .
.} 17. } /* class B */
18. class C extends A { .

=,

.}

0.3 marked as Escaping.
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5. Method Inlining

O o0 ~N O U1 A W N B

. Class A {

void foo() {

~ z.bar(x);}
.\FTFaagaFEp, d);
t /* method foo */
void bar(A p1) { .
void foobar(A p2) { .
. } /* class A */

.}

.}

Inline

10.
11.
12.
13.
14.
15.
16.
17.
18.

class B extends A {
void bar(A p3) {

p3.f = new AQ);
p3.foobar(ps.f);

}
void foobar(A ps) { .

} /* class B */

class C extends A { .

=,

.}
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5. Method Inlining

Afool ' 1

bar

Callee object on caller’s stack frame

inlining_cond

Afoo()[..1[4,B.bar(ps),{013}]
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Summary

Conditional

A::foo() [Direct_Allocation] [polymorphic_cond] [branching_cond] [inlining_cond]

s JVM|

Statically generated results

i
/
%05

\_ /
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Algorithmin the JIT Compiler

1. Polymorphic Callsite

for each 0 in JIT _identified _objects(m):

------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------

] SAm[O] [c] ) ( vVt € SAn[O] [c] Z CPn(t) > ST)
\ \,/l | ;
O £ I - L U R (N .
5 < 1% B 2 ofival:
- 2 o | plivts
O 3 a® vdaiz;
/ \ J y

2. Branching Conditions

for each 0 in JIT identified objects(m):

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
*

------------------------------------------------------------------------------------------------ r-------------------------..----.-’5
) I
N [mmmmmman , EEEEE
\&’ b1,b2 ; & ] LECTE
2 _____ o ::.'.'.'.'.:
5| 1o £ |@a¥@.'%_=
Q| Y Y
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Algorithmin the JIT Compiler

~
N EC’<m> I
3. Inlining Conditions % ...........
S [oioiion
\_ J
for each callsite C/E CallSitesm:
Callersc = SAm|[c] ~
if 3 n such that (n € ITm[c] A n € Callersc): | |= i
—» S| L w.. _
Ostatic = statically_marked_objects(m) = <qn>j
(mark all 0 € Ostatic) g
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Evaluation (Setup)

* Implementation:

Static analysis

y 4

V 4
»oot

 Evaluation schemes:

 BaselLine: Stack allocation with the

 Benchmarks:

Runtime components: * DaCapo benchmark suites:
= ' (23.10-chopin and 9.12 MRI)
.J9 * SPECjvm 2008

 Compute:

* Enhancement in stack allocation.

existing JI'T scheme.

* CoSSIJIT: Stack allocation with our

* Impact on performance and garbage
collection.

direct+conditional scheme.
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Evaluation (Stack Allocation)

35

Base Scheme (BaselLine) Conditional Scheme (CoSSIJIT)
Benchmark (S::)aut::i Dynamic Count :if:zt (S::)a::; Dynamic Count :il?e:: Hce:l?ri‘fty
avrora 12 104.2M (38.0%) 3335MB 14 106.5M (39.3%) 3391.4MB 0.4M
compress 8 0.01M (3.29%) 1720MB 18 0.093M (15.5%) 2.75MB OM
graphchi 12 349M (5.20%) 8327MB 109 1041.1M (14.2%) 20020MB 0.0006M
h2 61 33M (1.02%) 579MB 129 525M (16.2%) 12749MB 6M
luindex 30 4.9M (3.16%) 137MB 84 24.2M (15.4%) 746MB 0.06M
pmd 24 1762M (9.80%) 42295MB 92 1835M (10.2%) 43468MB 0.2M
sunflow 100 1077M (20.0%) 27577MB 243 2286M (34.7%) 56042MB 0.19M
signverify 15 0.24M (0.86%) 6.8MB 40 3.25M (6.34%) 102.2MB 0.5M
zxing 82 24.2M (2.61%) 987.6MB 347 1539M (16.4%) | 52796.7MB 0.4M
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Evaluation (Stack Allocation)

Stack Allocation: 1.4xt Stack Bytes: 5.7x*
(Less Heap Allocation)

35
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Garbage Collection

™

e

PLATO
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Garbage Collection

— o BaseLine B CoSSJIT
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O
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graphchi
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Garbage Collection

™

e

PLATO
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Garbage Collection

GC Reduction at X: 35% +

38
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Performance Improvement
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Performance Improvement

Performance Improvement: 6.7%#*
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Contributions by different Speculative Conditions
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Contributions by different Speculative Conditions

All speculative conditions make noticeable contributions.
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CoSSJIT: Take Aways

* Enriched the static analysis with possibility of speculation at run-time.

®* Mechanism in the JIT compiler to incorporate the conditional static analysis results.

Enriched Static Analysis 500t
Precise Escape More Capable
Analysis Results JIT (SMC+ SMI
reslfile o
+ SBE)

Conditional Stack
Allocation Results

OpenJ9

* Overall, one of the first approaches that strike a balance between static analysis and JIT

speculation, harnessing the best of both the worlds.
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Compilers
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MANAS THAKUR, Indian Institute of Technology Bombay, India

Just-in-time (JIT) compilers typically sacrifice the precision of program analysis for efficiency, but are capable
of performing sophisticated speculative optimizations based on run-time profiles to generate code that is
specialized to a given execution. On the contrary, ahead-of-time static compilers can often afford precise
flow-sensitive interprocedural analysis, but produce conservative results in scenarios where higher precision
could be derived from run-time specialization. In this paper, we propose the first-of-its-kind approach to
enrich static analysis with the possibility of speculative optimization during JIT compilation, as well as its
usage to perform aggressive stack allocation on a production Java Virtual Machine (JVM).

Our approach of combining static analysis with JIT speculation — named CoSSJIT - involves three key
contributions. First, we identify the scenarios where a static analysis would make conservative assumptions
but a JIT could deliver precision based on run-time speculation. Second, we present the notion of “speculative
conditions” and plug them into a static interprocedural dataflow analyzer (whose aim is to identify heap objects
that can be allocated on stack), to generate partial results that can be specialized at run-time. Finally, we extend
a production JIT compiler to read and enrich static-analysis results with the resolved values of speculative
conditions, leading to a practical approach that efficiently combines the best of both worlds. Cherries on the
cake: Using CoSSJIT, we obtain 5.7X improvement in stack allocation (translating to performance), while
building on a system that ensures functional correctness during JIT compilation.
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Just-in-time (JIT) compilers typically sacrifice the precision of program analysis for efficiency, but are capable
of performing sophisticated speculative optimizations based on run-time profiles to generate code that is
specialized to a given execution. On the contrary, ahead-of-time static compilers can often afford precise
flow-sensitive interprocedural analysis, but produce conservative results in scenarios where higher precision
could be derived from run-time specialization. In this paper, we propose the first-of-its-kind approach to
enrich static analysis with the possibility of speculative optimization during JIT compilation, as well as its
usage to perform aggressive stack allocation on a production Java Virtual Machine (JVM).

Our approach of combining static analysis with JIT speculation — named CoSSJIT - involves three key
contributions. First, we identify the scenarios where a static analysis would make conservative assumptions
but a JIT could deliver precision based on run-time speculation. Second, we present the notion of “speculative
conditions” and plug them into a static interprocedural dataflow analyzer (whose aim is to identify heap objects
that can be allocated on stack), to generate partial results that can be specialized at run-time. Finally, we extend
a production JIT compiler to read and enrich static-analysis results with the resolved values of speculative
conditions, leading to a practical approach that efficiently combines the best of both worlds. Cherries on the
cake: Using CoSSJIT, we obtain 5.7X improvement in stack allocation (translating to performance), while
building on a system that ensures functional correctness during JIT compilation.
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