CoSSJIT: Combining Static Analysis and
Speculation in JIT Compilers

Research Highlights in Programming Languages (RHPL 2025)

Aditya Anand®, Vijay Sundaresant, Daryl Maiert and Manas Thakur®

‘IIT Bombay, TIBM Canada

18th December 2025

Brief Introduction

* Program Analysis and JIT (Just-In-Time) compilers for Java like languages.

* JITs prioritize fast decisions over precise analysis, resulting in conservative
optimization.

 Idea: Staged Static+Dynamic analysis for Managed Runtimes.
» Offload the costly analysis to static time.

* Use analysis results in the JIT to enable additional optimizations.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Staged Analysis

* Optimization: Object Allocation Escape Analysis

* By default, objects in Java are allocated on the heap. |Indirection, Need GC

» Stack Allocation: Allocate method local objects on the stack frame. |Faster access, No GC

* Perform precise (context-, flow-, field- A

wee Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes

sensitive) escape analysis statically.

ADITYA ANAND, Indian Institute of Technology Bombay, India
SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India P L D I 2 4‘

® Use Statlca"y generated escape aﬂal}ISlS PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

. . . . ARYL MAIER, anada Lab, Canada
reSUIt tO OptlmlStlcally allocate Ob]eCtS \?KR]SHNA NAIII\SJA[/;l(i/A[;iA,LIr:)diSnIn(:titute of Technology Madras, India

MANAS THAKUR, Indian Institute of Technology Bombay, India

on stack at runtime.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Optimistic Stack Allocation

Can we always re]y on the Static I> Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes

an alySl S re S UI t ?? ADITYA ANAND, Indian Institute of Technology Bombay, India
SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India P LDI 2 4‘
PRIYAM SETH, Indian Institute of Technolo andi, India

Features like Dynamic ClassLoading VUAY SUNDARESAN, I Consda Lab,Conad.
DARYL MAIER, IBM Canada Lab, Canada

(DCL), HotCode Replacement MANAS THAKUR, ndln It of cisiogr Bombeg nts. ||

(HCR), Callbacks can make your

static analysis result go unsound.

We need to have a fallback mechanism Examp]e for Dynamic C]assLQading

to ensure functional correctness.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A { 11. void zar(A p, Ag) { . . .}
2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = p2;

4. A x =new AQ; // 0. |14. } /* method bar */

5. Ay =new AQQ; // O0s |[15. } /* class A */

o. x.f = new AQ); // O¢

/. Ap=x.T;

8. bar(p, y);

9.

r.zar(p, 4);
10. } /* method foo */

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A { 11. void zar(Ap, Aq) { . . } £00

2. At 12. void bar(A p1, A p2) { :

3. void foo(A q, A r) { 13. p1.f = p2;

4. AXx=new AQD; // 04+ |14. } /* method bar */ @ > O
5. Ay =new AQQ; // 0Os |15. } /* class A */ 5

0. x.f = new AQ); // Os

/. Ap=Xx.f;

8. bar(p, y);

9.

r.zar(p, q);
10. } /* method foo */

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A { 11. void zar(A p, A g) { . . } £00

2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = pz;

4. A x =new AQ; // 0. |14. } /* method bar */ £ > 04
5. Ay =new AQD; // Os |[15. } /* class A */

o. x.f = new AQ); // O¢

/. Ap=x.T;

3. bar(p, y); ;

9. r.zar(p, q); ;

10. } /* method foo */ @ > 05

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A { 11. void zar(A p, A g { . . } £00
2. A f; 12. void bar(A p1, A p2) { .
3. void foo(A g, A r) { 13. p1.f = p2;

: X - Oy
4, A x =new AQ; // 0. |14. + /* method bar */ E
5. Ay =new AQ); // Os ||]15. } /* class A */ *f
6. x.f = new AQ; // 0. :

Os

/. Ap=x.f;
8. bar(p, y); E
9. r.zar(p, q); > O
10. } /* method foo */ Y °

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A { 11. void zar(A p, Aq) { . . } £00

2. AT, 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = pz;

4. A x =new AQ); // O |14. } /* method bar */ E £ > Oy
5. Ay =new AQQ; // 0s |15. } /* class A */ ‘f
6. X.t = new AQ); // Os 5

/. Ap = x.f; P » Og
8. bar(p, y); :

9. r.zar(p, q); 5

10. } /* method foo */ y > Os

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A { 11. void zar(A p, Aq) { . . } £00

2. AT, 12. void bar(A p1, A p2) {

3. void foo(A q, A r) 1 13. p1.f = pz;

4. A x =new ACQ); // 0, |14. } /* method bar */ E < > Oy
5. Ay =new AQQ; // 0s |15. } /* class A */ ¢f
6. X.t = new AQ); // Os 5

/. Ap = x.f; P » Og
8. bar(p, y); :

9. r.zar(p, q); 5

10. 3} /* method foo */ y > Os

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A { 11. void zar(Ap, A g { . . } f00

2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = pz;

4. A x =new ACQ); // 0, |14. } /* method bar */ E A » Oy
5. Ay =new AQ); // Os ||15. } /* class A */ ‘f
6. x.f = new AQ; // Oc 5

7. Ap = x.f; P » Og
8. bar(p, y); ‘f
9. r.zar(p, q); 5

10. 1} /* method foo */ Yy » Os

10

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A { 11. void zar(Ap, Aq) { . . } £ o0

2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.f = p2;

4. A x =new ACQ); // O+ |14. } /* method bar */ E A » Oy
5. Ay =new AQ); // Os ||15. } /* class A */ ‘f
6. x.f = new AQ; // Oc 5

7. Ap = x.f; P » Og
8. bar(p, y); g ‘f
9. r.zar(p, q); 5

10. 1} /* method foo */ Yy » Os

11

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A { 11. void zar(A p, A g { . . } £00
2. A f; 12. void bar(A p1, A p2) { :
3. void foo(A g, A r) { 13. p1.f = p2;
X » Oy

4, A x =new AQ; // 0. |14. + /* method bar */ E
5. Ay =new AQ); // Os ||]15. } /* class A */ ‘f
6. x.f = new AQ); // O. E 0
/. Ap=x.f; P > Ve
8. bar(p, y); ‘f
9. r.zar(p, qg); é O
10. } /* method foo */ Stack Allocate Y > s

04 Osand Oe

11

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A { 11. void zar(A p, Ag) { . . } £00
2. A f; 12. void bar(A p1, A p2) {
3. void foo(A g, A r) { 13. p1.f = p2;
4. A x =new AQ); // O |14. } /* method bar */ E X » Oy
5. Ay =new AQ); // Os ||]15. } /* class A */ g
°. X.f = new AQ; /7 O 16. class B extends A D - O6
‘. Ap = X.f; 17. void zar(A p, A g) { ;
8. bar(p, y); SET) q.f = p: ‘f
9. r.zar(p, 4); 19. 1 /* method zar */ v > O-
10. } /* method foo */ ; 20. ¥ /* class B */ 5

Dynamically
- loaded

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1.

O o0 ~N O O b W N

10.

class A {

vold foo<::§> Ar) {

new AQ); // Oa
Ay =new AQ); // Os
x.f = new AQ); // O¢
Ap=x.f;
bar(p, y);

r.zar(p, ;

} /* method foo */

11.
12.
13.
14.
15.

void zar(A p, A gq) { .
void bar(A pi, A p2) {
p1.T = p2;
} /* method bar */
+ /* class A */

16.
17.
18.
19.
20.

class B extends A
void zar(A p, @) 1
g.f =
} /* method zar */
} /* class B */

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Dynamic ClassLoading Example

1. class A {

2.

3. void foo@ A {

4. new AQ); // Oa
5. Ay =new AQ; // Os
o. x.f = new AQ); // O¢
/. Ap=x.T;

8. bar(p, y);

9.

r.zar(p, ;

10. } /* method foo */

14

11. void zar(A p, A g) { .
12. void bar(A p1, A p2) {
13. p1.T = p2;
14 . } /* method bar */
15. } /* class A */
16. class B extends A
17. void zar(A p, @) {
18. g.f =
19. t /* method zar */
20. } /* class B */

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Os

Incorrect allocation on
stack

Dynamic Heapification

Dynamic ClassLoading Example

1. class A {

2.

3. void foo@ A {

4. new AQ); // Oa
5. Ay =new AQ; // Os
o. x.f = new AQ); // O¢
/. Ap=x.T;

8. bar(p, y);

9.

r.zar(p, ;

10. } /* method foo */

14

11. void zar(A p, A g) { .
12. void bar(A p1, A p2) {
13. p1.T = p2;
14 . } /* method bar */
15. } /* class A */
16. class B extends A
17. void zar(A p, @) {
18. g.f =
19. t /* method zar */
20. } /* class B */

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Os

Incorrect allocation on
stack

15

Heapification

Stack

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

16

Heapification

Stack

bar

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

17

Heapification

Stack

foo

bar

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

18

Heapification

Stack

foo

bar

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

19

Heapification

Stack

foo

bar

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

19

Heapification

How to identify the need for heapification?
Heapification Checks

* Return of references. (Byte code: return.)
* References stores. (Byte code: putfield, putstatic, aastore.)
* Throwing of exception. (Byte code: athrow.)

 Calls to native. (Byte code: putObject, putObjectOrdered, putObjectVolatile.)

» JNI APIs used to perform stores in called C/C++ code. (Byte code: setObjectField.)

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

20

Summary and Moving Ahead

 Fallback as heapification allowed us to maintain functional correctness due to the
dynamism offered by the Language/VM

* Overall, one of the first approaches to soundly and efficiently use static (offline)
analysis results in a JIT compiler!

Is this the best we can do for stack allocation?

Can we go more aggressive?

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

21

PYE: A Framework for Precise-Yet-Efficient Just-In-Time

Recent Works on Static + Dynamic Analysis

Analyses for Java Programs
TOPLAS 19

MANAS THAKUR and V. KRISHNA NANDIVADA, IIT Madras

ZS3: Marrying Static Analyzers and Constraint Solvers to

Parallelize Loops in Managed Runtimes

CASCON 22
Rishi Sharma* Shreyansh Kulshreshtha® Manas Thakur
EPFL Publicis Sapient IIT Mandi

rishi-sharma@outlook.com shreyanshkuls@outlook.com manas@iitmandi.ac.in

wse Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

Principles of Staged Static+Dynamic
Partial Analysis
Aditya Anand® and Manas Thakur®™)
Indian Institute of Technology Mandi, Kamand, India
ud21002@students.iitmandi.ac.in, manas@iitmandi.ac.in

RESEARCH ")
Check for
updates

Partial program analysis for staged compilation systems

Aditya Anand’ - Manas Thakur' FMSD 24

Received: 30 April 2023 / Accepted: 16 May 2024 / Published online: 13 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India

PLDI 24

PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India
MANAS THAKUR, Indian Institute of Technology Bombay, India

All these works use AOT-analysis
results to perform optimizations in
JIT Compilers.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Speculative Optimization in JIT Compilers

22

* Profile Information:

* Basic invocation, loop invariant values.

Standard Speculative Optimizations

Conservative Fallback

* Type profiles at type-cast statements and polymorphic callsites.

* Branch information, instance of checks.

* Dynamic Class Hierarchy:

* Information about loaded subclasses of a given class during execution.

* Inlining Table:

* Information about the list of methods inlined at various callsites.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Speculative Optimization in JIT Compilers

How can we get the best of static analysis and run-time information ??

22

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

23

OOPSLA 25

CoSSJIT: Combining Static Analysis and

Speculation in JIT Compilers

e |dea:

* Enrich Static Analysis results with possibility of speculation at run-time.

* Enable the JIT Compiler to perform speculative optimization based on the

static analysis results.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

24

1. Polymorphic Callsites

1. class A {
2. static A global;

4. void foo(A z) {

5. A x = new AQ); // 0Os
6 Ay =new AQ; // 0Os
/ x.f = new AQ); // 07

--

--

15. } /* method foo
16. } /* class A */

{ 17. class B extends A {
[18. void bar(A p) { . . .}

--
3 ~

~ -
..

--
- ~

{'26. class C extends A {
(21 void bar(A p3) {

--

--

.

1B, C } —[O:] [O-] [Escaping]

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. Polymorphic Callsites

ﬂ ~

25

1. class A { {17 class B extends A {
S E 18. void bar(A p2) { . . .}
4. id foo(A i
void too(A 2) 1 .[19. } /* class B */ ;
5. A X =new AQ); // Os PP ~%
c Ay = new AQ): // Oe é 20. clas§ C extends A { ;
/. x.f = new AQ; // 07 E,%%l --------- Y?}qugfgémPész ------------------------------ \E
122 global = ps; Escapes |
14 2. bar(x): 3. ¥
15. L /* method foo * gﬁlm} ---
16. } /* class A */ At runtime:
polymorphic_cond| - Class Hierarchy (CHTable): C is not loaded.
Afoo()[..]1[z_14, {B},{0s, O7}] - Most of the times z is of type “B”.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

26

2. Branching

1.

class A {

void foo(A pl) {
Ay =new AQ; // 0Os

1f(pl 1nstance A) {

n: —> Og¢ (Escaping)

y.t = pl;

t /* method foo */

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

27

2. Branching

1.

11.
13.
14.
15.
16.

class A {
void foo(A pl) {
Ay =new AQ; // 0Os
1f(pl 1nstance A) {
} else {
global = y;
y.t = pl;
t /* method foo */

At runtime:

. The “if” branch is taken most
number of times.

branching_cond

Afoo()[..1[9, {06}]

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

28

5. Method Inlining

O 60 ~N O U1 H» W N -

. Class A {
void foo() {

Zz.bar(x);
r.foobar(p, q);
} /* method foo */
void bar(A p1) { .
void foobar(A p2) { .
.} /* class A */

10. class B extends A {
11. void bar(A p3) {
12.
13. p3.f = new AQ);
14 . p3.foobar(ps.f);
15. }
.} 16. void foobar(A ps) { .
.} 17. } /* class B */
18. class C extends A { .

=,

.}

0.3 marked as Escaping.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

29

5. Method Inlining

O o0 ~N O U1 A W N B

. Class A {

void foo() {

~ z.bar(x);}
.\FTFaagaFEp, d);
t /* method foo */
void bar(A p1) { .
void foobar(A p2) { .
. } /* class A */

.}

.}

Inline

10.
11.
12.
13.
14.
15.
16.
17.
18.

class B extends A {
void bar(A p3) {

p3.f = new AQ);
p3.foobar(ps.f);

}
void foobar(A ps) { .

} /* class B */

class C extends A { .

=,

.}

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

29

5. Method Inlining

Afool ' 1

bar

Callee object on caller’s stack frame

inlining_cond

Afoo()[..1[4,B.bar(ps),{013}]

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

30

Summary

Conditional

A::foo() [Direct_Allocation] [polymorphic_cond] [branching_cond] [inlining_cond]

s JVM|

Statically generated results

i
/
%05

_ /

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

31

Algorithmin the JIT Compiler

1. Polymorphic Callsite

for each 0 in JIT _identified _objects(m):

--

] SAm[O] [c]) (vVt € SAn[O] [c] Z CPn(t) > ST)
\ \,/l | ;
O £ I - L U R (N .
5 < 1% B 2 ofival:
- 2 o | plivts
O 3 a® vdaiz;
/ \ J y

2. Branching Conditions

for each 0 in JIT identified objects(m):

lll
*

-- r-------------------------..----.-’5
) I
N [mmmmmman , EEEEE
\&’ b1,b2 ; &] LECTE
2 _____ o ::.'.'.'.'.:
5| 1o £ |@a¥@.'%_=
Q| Y Y

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

32

Algorithmin the JIT Compiler

~
N EC’<m> I
3. Inlining Conditions %
S [oioiion
_ J
for each callsite C/E CallSitesm:
Callersc = SAm|[c] ~
if 3 n such that (n € ITm[c] A n € Callersc): | |= i
—» S| L w.. _
Ostatic = statically_marked_objects(m) = <qn>j
(mark all 0 € Ostatic) g

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

33

Evaluation (Setup)

* Implementation:

Static analysis

y 4

V 4
»oot

 Evaluation schemes:

 BaselLine: Stack allocation with the

 Benchmarks:

Runtime components: * DaCapo benchmark suites:
= ' (23.10-chopin and 9.12 MRI)
.J9 * SPECjvm 2008

 Compute:

* Enhancement in stack allocation.

existing JI'T scheme.

* CoSSIJIT: Stack allocation with our

* Impact on performance and garbage
collection.

direct+conditional scheme.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Evaluation (Stack Allocation)

35

Base Scheme (BaselLine) Conditional Scheme (CoSSIJIT)
Benchmark (S::)aut::i Dynamic Count :if:zt (S::)a::; Dynamic Count :il?e:: Hce:l?ri‘fty
avrora 12 104.2M (38.0%) 3335MB 14 106.5M (39.3%) 3391.4MB 0.4M
compress 8 0.01M (3.29%) 1720MB 18 0.093M (15.5%) 2.75MB OM
graphchi 12 349M (5.20%) 8327MB 109 1041.1M (14.2%) 20020MB 0.0006M
h2 61 33M (1.02%) 579MB 129 525M (16.2%) 12749MB 6M
luindex 30 4.9M (3.16%) 137MB 84 24.2M (15.4%) 746MB 0.06M
pmd 24 1762M (9.80%) 42295MB 92 1835M (10.2%) 43468MB 0.2M
sunflow 100 1077M (20.0%) 27577MB 243 2286M (34.7%) 56042MB 0.19M
signverify 15 0.24M (0.86%) 6.8MB 40 3.25M (6.34%) 102.2MB 0.5M
zxing 82 24.2M (2.61%) 987.6MB 347 1539M (16.4%) | 52796.7MB 0.4M

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Evaluation (Stack Allocation)

Stack Allocation: 1.4xt Stack Bytes: 5.7x*
(Less Heap Allocation)

35

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Garbage Collection

™

e

PLATO

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

(
30000 — 5406 M BaseLine W CoSSJIT ! BaselLine B CoSSJIT 80000 - M BaselLine W CoSSJIT
30000 61749
26479 61413
0 26292 » 60000
2 20000 + @ 3
> - >
O O 20000 + O
O %) O 40000 -
3 12383 12175 S S 33767 33613
© 10000 A 9 10177 10082 o 22308 292242
2 o 10000 =~ 7510 7402 S 20000 -
2 2782 2731 9160 9076
0 - oI SN SN BN -- 0 -
X 2X 3X DEF DEE X 2X 3X DEF
Max Heap (MB) Max Heap (MB) Max Heap (MB)
graphchi luindex lusearch
f -
400000 362305 W BaselLine B CoSSJIT 400000 —— @ BaselLine B CoSSJIT 15000 — W BaselLine M CoSSJIT
362082 12826 1 5209
306518 3094313 1180111263 10969
o 300000 » 300000 - n 10465
3 L 2 10000 +
o S o 8699 0009
1 178885 Q Q
0 5 130100 129908 S 5000 L
S 100000 + S 1 84750-83979 O
< 57438 57430 z 100000 - Z
34811
0 0 - 0 -
X 2X 3X DEF X 2X 3X DEF 2X 3X DEF
Max Heap (MB) Max Heap (MB) Max Heap (MB)
sunflow xalan zxing

Garbage Collection

— o BaseLine B CoSSJIT
30000 56496
25912
® 18072
— 20000 +
% 18017
O
O 12383 12175
© 10000 +
@)
prd
2240 9919
0

X 2X 3X DEF
Max Heap (MB)

graphchi

37

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Garbage Collection

™

e

PLATO

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

(
30000 — 5406 M BaseLine W CoSSJIT ! BaselLine B CoSSJIT 80000 - M BaselLine W CoSSJIT
30000 61749
26479 61413
0 26292 » 60000
2 20000 + @ 3
> - >
O O 20000 + O
O %) O 40000 -
3 12383 12175 S S 33767 33613
© 10000 A 9 10177 10082 o 22308 292242
2 o 10000 =~ 7510 7402 S 20000 -
2 2782 2731 9160 9076
0 - oI SN SN BN -- 0 -
X 2X 3X DEF DEE X 2X 3X DEF
Max Heap (MB) Max Heap (MB) Max Heap (MB)
graphchi luindex lusearch
f -
400000 362305 W BaselLine B CoSSJIT 400000 —— @ BaselLine B CoSSJIT 15000 — W BaselLine M CoSSJIT
362082 12826 1 5209
306518 3094313 1180111263 10969
o 300000 » 300000 - n 10465
3 L 2 10000 +
o S o 8699 0009
1 178885 Q Q
0 5 130100 129908 S 5000 L
S 100000 + S 1 84750-83979 O
< 57438 57430 z 100000 - Z
34811
0 0 - 0 -
X 2X 3X DEF X 2X 3X DEF 2X 3X DEF
Max Heap (MB) Max Heap (MB) Max Heap (MB)
sunflow xalan zxing

Garbage Collection

GC Reduction at X: 35% +

38

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Performance Improvement

270 -

N

(@))

)]
1

260 -

Normalized time (milh sec)

luindex

990 -

©

(00)

o
1

(o)

~

o
1

(o)

(@)

o
1

950 -

Normalized time (mill sec)

940 -

lusearch

ES CossJlT

[3)
(D)
(p]
E 13000 -
= Legend
.g . BaselLine
O 12000 - IT
g ES CossJ
©
S
@)
Z 11000 -
graphchi

[3)
((b)
@ 22500 -
E
= Legend

22000 -
.g E—— ' BaselLine
O

IT
,&’ 21500 - ' woss
©
£
@)
sunflow

39

PLATO

3920 -
——

W
(00)
(00)
o
1

3840 -

3800 - ‘

Normalized time (milli sec)

xalan

Bl CossuIT

12700 -
12650 -
12600 -

—

12550 -

Normalized time (mill sec)

zZXing

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

ES CossJIT

Performance Improvement

Performance Improvement: 6.7%#*

39

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Contributions by different Speculative Conditions

¥ Branching Inlining B PolyCall Unconditional BaselLine
400 T
347
300 T =g
543 254
13
80
200
105 168
T 152 166 .
109 118 1 81
1 74 23 32
100 + 12 84
10 —_—— ———
121 14 39 32
1 4
74 00 81 89 0 93
53 61
30
19
0 12
graphchi sunflow xalan fop zXxing luindex lusearch h2 compiler
Benchmarks

40

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Contributions by different Speculative Conditions

All speculative conditions make noticeable contributions.

40

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

CoSSJIT: Take Aways

* Enriched the static analysis with possibility of speculation at run-time.

®* Mechanism in the JIT compiler to incorporate the conditional static analysis results.

Enriched Static Analysis 500t
Precise Escape More Capable
Analysis Results JIT (SMC+ SMI
reslfile o
+ SBE)

Conditional Stack
Allocation Results

OpenJ9

* Overall, one of the first approaches that strike a balance between static analysis and JIT

speculation, harnessing the best of both the worlds.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

CoSSJIT: Take Aways

CoSSJIT: Combining Static Analysis and Speculation in JIT
Compilers

ADITYA ANAND, Indian Institute of Technology Bombay, India
VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

MANAS THAKUR, Indian Institute of Technology Bombay, India

Just-in-time (JIT) compilers typically sacrifice the precision of program analysis for efficiency, but are capable
of performing sophisticated speculative optimizations based on run-time profiles to generate code that is
specialized to a given execution. On the contrary, ahead-of-time static compilers can often afford precise
flow-sensitive interprocedural analysis, but produce conservative results in scenarios where higher precision
could be derived from run-time specialization. In this paper, we propose the first-of-its-kind approach to
enrich static analysis with the possibility of speculative optimization during JIT compilation, as well as its
usage to perform aggressive stack allocation on a production Java Virtual Machine (JVM).

Our approach of combining static analysis with JIT speculation — named CoSSJIT - involves three key
contributions. First, we identify the scenarios where a static analysis would make conservative assumptions
but a JIT could deliver precision based on run-time speculation. Second, we present the notion of “speculative
conditions” and plug them into a static interprocedural dataflow analyzer (whose aim is to identify heap objects
that can be allocated on stack), to generate partial results that can be specialized at run-time. Finally, we extend
a production JIT compiler to read and enrich static-analysis results with the resolved values of speculative
conditions, leading to a practical approach that efficiently combines the best of both worlds. Cherries on the
cake: Using CoSSJIT, we obtain 5.7X improvement in stack allocation (translating to performance), while
building on a system that ensures functional correctness during JIT compilation.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

41

CoSSJIT: Take Aways

CoSSJIT: Combining Static Analysis and Speculation in JIT
Compilers

ADITYA ANAND, Indian Institute of Technology Bombay, India
VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

MANAS THAKUR, Indian Institute of Technology Bombay, India

Just-in-time (JIT) compilers typically sacrifice the precision of program analysis for efficiency, but are capable
of performing sophisticated speculative optimizations based on run-time profiles to generate code that is
specialized to a given execution. On the contrary, ahead-of-time static compilers can often afford precise
flow-sensitive interprocedural analysis, but produce conservative results in scenarios where higher precision
could be derived from run-time specialization. In this paper, we propose the first-of-its-kind approach to
enrich static analysis with the possibility of speculative optimization during JIT compilation, as well as its
usage to perform aggressive stack allocation on a production Java Virtual Machine (JVM).

Our approach of combining static analysis with JIT speculation — named CoSSJIT - involves three key
contributions. First, we identify the scenarios where a static analysis would make conservative assumptions
but a JIT could deliver precision based on run-time speculation. Second, we present the notion of “speculative
conditions” and plug them into a static interprocedural dataflow analyzer (whose aim is to identify heap objects
that can be allocated on stack), to generate partial results that can be specialized at run-time. Finally, we extend
a production JIT compiler to read and enrich static-analysis results with the resolved values of speculative
conditions, leading to a practical approach that efficiently combines the best of both worlds. Cherries on the
cake: Using CoSSJIT, we obtain 5.7X improvement in stack allocation (translating to performance), while
building on a system that ensures functional correctness during JIT compilation.

Thank You !!

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

