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• Program Analysis and JIT (Just-In-Time) compilers for Java like languages. 
• JITs prioritize fast decisions over precise analysis, resulting in conservative 

optimization.
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• Idea: Staged Static+Dynamic analysis for Managed Runtimes.
• Offload the costly analysis to static time. 
• Use analysis results in the JIT to enable additional optimizations.

Brief Introduction

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers
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• Perform precise (context-, flow-, field-
sensitive) escape analysis statically.

• Use statically generated escape analysis 
result to optimistically allocate objects 
on stack at runtime.

• Optimization: Object Allocation

• By default, objects in Java are allocated on the heap.

• Stack Allocation: Allocate method local objects on the stack frame. 

Staged Analysis

PLDI	24
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Escape Analysis

Indirection, Need GC

Faster access, No GC
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PLDI	24

Optimistic Stack Allocation

• We need to have a fallback mechanism 
to ensure functional correctness.
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• Can we always rely on the static 
analysis result ??

• Features like Dynamic ClassLoading 
(DCL), HotCode Replacement 
(HCR), Callbacks  can make your 
static analysis result go unsound.

Example	for	Dynamic	ClassLoading	



1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

Dynamic ClassLoading Example
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11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 



Dynamic ClassLoading Example
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Stack Allocate
O4,	O5	and		O6

Dynamic ClassLoading Example
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Dynamically 
loaded

16. class B extends A
17.   void zar(A p, A q) {
18.      q.f = p;
19.   } /* method zar */ 
20. } /* class B */ 

Dynamic ClassLoading Example
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Dynamic ClassLoading Example
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Heapification
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How to identify the need for heapification?

Heapification Checks

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

• JNI APIs used to perform stores in called C/C++ code. (Byte code: setObjectField.)

• Calls to native. (Byte code: putObject, putObjectOrdered, putObjectVolatile.)
• Throwing of exception. (Byte code: athrow.)

Heapification

19
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• Fallback as heapification allowed us to maintain functional correctness due to the 
dynamism offered by the Language/VM 

• Overall, one of the first approaches to soundly and efficiently use static (offline) 
analysis results in a JIT compiler!

Is this the best we can do for stack allocation? 

Can we go more aggressive?



Recent Works on Static + Dynamic Analysis

All these works use AOT-analysis  
results to perform optimizations in 

 JIT Compilers. 
21

TOPLAS	19

CASCON	22

PLDI	24

SAS	22

FMSD	24

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers



Speculative Optimization in JIT Compilers
• Profile Information: 

22

• Dynamic Class Hierarchy: 

• Inlining Table: 

Standard Speculative Optimizations

• Basic invocation, loop invariant values.

• Branch information, instance of checks.

• Type profiles at type-cast statements and polymorphic callsites.

• Information about loaded subclasses of a given class during execution.

• Information about the list of methods inlined at various callsites.
CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Conservative Fallback
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• Profile Information: 
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• Dynamic Class Hierarchy: 

• Inlining Table: 

Standard Speculative Optimizations

How can we get the best of static analysis and run-time information ??

• Basic invocation, loop invariant values.

• Branch information, instance of checks.

• Type profiles at type-cast statements and polymorphic callsites.

• Information about loaded subclasses of a given class during execution.

• Information about the list of methods inlined at various callsites.
CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Conservative Fallback



CoSSJIT: Combining Static Analysis and  
Speculation in JIT Compilers 
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• Idea: 
• Enrich Static Analysis results with possibility of speculation at run-time.
• Enable the JIT Compiler to perform speculative optimization based on the 

static analysis results. 

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

OOPSLA	25



1. Polymorphic Callsites
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1. class A {
2. static A global;   

 .  .  . 
4.  void foo(A z) {
5.      A x = new A(); // O5 
6.      A y = new A(); // O6
7.      x.f = new A(); // O7 

. . .
14.     z.bar(x);
15.   } /* method foo */
16. } /* class A */

17. class B extends A {
18.   void bar(A p2) { . . . }
19. } /* class B */

⊓ : {B, C } —> [O5],[O7] [Escaping]  

20. class C extends A { 
21.   void bar(A p3) { 
22.     global = p3; 
23.   }
24. } /* class C */

Escapes

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers
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1. class A {  
  . . .  

4.  void foo(A z) {
5.      A x = new A(); // O5 
6.      A y = new A(); // O6
7.      x.f = new A(); // O7 

. . .
14.     z.bar(x);
15.   } /* method foo */
16. } /* class A */

17. class B extends A {
18.   void bar(A p2) { . . . }
19. } /* class B */

20. class C extends A { 
21.   void bar(A p3) { 
22.     global = p3; 
23.   }
24. } /* class C */

Escapes

At runtime: 
•  Class Hierarchy (CHTable): C is not loaded.
•  Most of the times z is of type “B”.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

A.foo() [ . . ] [z_14, {B},{O5, O7}]
polymorphic_cond
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1. class A {  
  . . .  

5.  void foo(A p1) {
6.      A y = new A(); // O6
     . . .
9.      if(p1 instance A) {
     . . .
11.     } else {
13.        global = y; 
14.    }
15.    y.f = p1;
16.   } /* method foo */ 

⊓ : —> O6 (Escaping)  

2. Branching

Escapes

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers
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1. class A {  
  . . .  

5.  void foo(A p1) {
6.      A y = new A(); // O6
     . . .
9.      if(p1 instance A) {
     . . .
11.     } else {
13.        global = y; 
14.    }
15.    y.f = p1;
16.   } /* method foo */ 

2. Branching

At runtime: 
•  The “if” branch is taken most 
number of times.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

A.foo() [ . . ] [9,{O6}]
branching_cond
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1. class A {
2.   void foo() {
3.      . . .
4.      z.bar(x);
5.      r.foobar(p, q); 
6.   } /* method foo */
7.   void bar(A p1) { . . . }
8.   void foobar(A p2) { . . . }
9. } /* class A */

10. class B extends A {
11.   void bar(A p3) {
12.      // p3’s pointee doesn’t escape
13.      p3.f = new A(); // O13
14.      p3.foobar(p3.f); 
15.   } /* method bar */
16.   void foobar(A p4) { . . . } 
17. } /* class B */
18. class C extends A { . . . }

O13 marked as Escaping.

3. Method Inlining

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers
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1. class A {
2.   void foo() {
3.      . . .
4.      z.bar(x);
5.      r.foobar(p, q); 
6.   } /* method foo */
7.   void bar(A p1) { . . . }
8.   void foobar(A p2) { . . . }
9. } /* class A */

10. class B extends A {
11.   void bar(A p3) {
12.      // p3’s pointee doesn’t escape
13.      p3.f = new A(); // O13
14.      p3.foobar(p3.f); 
15.   } /* method bar */
16.   void foobar(A p4) { . . . } 
17. } /* class B */
18. class C extends A { . . . }

Inline

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

3. Method Inlining
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1. class A {
2.   void foo() {
3.      . . .
4.      z.bar(x);
5.      r.foobar(p, q); 
6.   } /* method foo */
7.   void bar(A p1) { . . . }
8.   void foobar(A p2) { . . . }
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12.      // p3’s pointee doesn’t escape
13.      p3.f = new A(); // O13
14.      p3.foobar(p3.f); 
15.   } /* method bar */
16.   void foobar(A p4) { . . . } 
17. } /* class B */
18. class C extends A { . . . }

Inline
x

₹foo

bar

On

O13 Callee object on caller’s stack frame
f

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

3. Method Inlining

A.foo() [ . . ] [4,B.bar(p3),{O13}]
inlining_cond
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A::foo() [Direct_Allocation]   [polymorphic_cond] [branching_cond]  [inlining_cond]

ConditionalDirect

Statically generated results

JVM

JIT

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers



Algorithm in the JIT Compiler
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1. Polymorphic Callsite
for each O in JIT_identified_objects(m): 
 

     (CHm[c] ⊆ SAm[O][c]) ∨ ( ∀t ∈ SAm[O][c] Σ CPm(t) > ST) 

2. Branching Conditions

for each O in JIT_identified_objects(m): 
 

        (∀ b ∈ SAm[O][br] with Σ BPm(b) > ST) 
St

at
ic

 R
es

O

α, β 

CH
Ta

bl
e

α
c

Pr
of

ile val1α
β val2

St
at

ic
 R

es b1,b2 

O Pr
of

ile val1b1

b2 val2



Algorithm in the JIT Compiler

32

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

3. Inlining Conditions

for each callsite c ∈ CallSitesm: 
    Callersc = SAm[c] 
    if ∃ n such that (n ∈ ITm[c] ∧ n ∈ Callersc): 
        Ostatic = statically_marked_objects(m) 
        mark all O ∈ Ostatic

St
at

ic
 R

es

O1

c,<m>

O2 On

<m>IT
ab

le c



Evaluation (Setup)
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• Implementation: 

Static analysis Runtime components:

• Benchmarks:
• DaCapo benchmark suites:  

        (23.10-chopin and 9.12 MRI)

• SPECjvm 2008

• Evaluation schemes: 
• BaseLine: Stack allocation with the 

existing JIT scheme. 

• CoSSJIT: Stack allocation with our 
direct+conditional scheme.

• Compute: 
• Enhancement in stack allocation. 

• Impact on performance and garbage 
collection.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers



Evaluation (Stack Allocation)
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Base Scheme (BaseLine) Conditional Scheme (CoSSJIT)

Benchmark Static 
Count Dynamic Count Stack 

Bytes
Static 
Count Dynamic Count Stack 

Bytes
Heapify 
Count

avrora 12 104.2M	(38.0%) 3335MB 14 106.5M	(39.3%) 3391.4MB 0.4M

compress 8 0.01M	(3.29%) 1720MB 18 0.093M	(15.5%) 2.75MB 0M

graphchi 12 349M	(5.20%) 8327MB 109 1041.1M	(14.2%) 20020MB 0.0006M

h2 61 33M	(1.02%) 579MB 129 525M	(16.2%) 12749MB 6M

luindex 30 4.9M	(3.16%) 137MB 84 24.2M	(15.4%) 746MB 0.06M

pmd 24 1762M	(9.80%) 42295MB 92 1835M	(10.2%) 43468MB 0.2M

sunTlow 100 1077M	(20.0%) 27577MB 243 2286M	(34.7%) 56042MB 0.19M

signverify 15 0.24M	(0.86%) 6.8MB 40 3.25M	(6.34%) 102.2MB 0.5M

zxing 82 24.2M	(2.61%) 987.6MB 347 1539M	(16.4%) 52796.7MB 0.4M

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers
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Stack Allocation: 1.4x     Stack Bytes: 5.7x
(Less Heap Allocation)
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Performance Improvement: 6.7% 
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Contributions by different Speculative Conditions
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All speculative conditions make noticeable contributions.



CoSSJIT:    Take Aways

41

• Overall,	one	of	the	Tirst	approaches	that	strike	a	balance	between	static	analysis	and	JIT	
speculation,	harnessing	the	best	of	both	the	worlds.

• Enriched	the	static	analysis	with	possibility	of	speculation	at	run-time.	
• Mechanism	in	the	JIT	compiler	to	incorporate	the	conditional	static	analysis	results.	
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