
18th	December	2025

CoSSJIT: Combining Static Analysis and
Speculation in JIT Compilers

Research Highlights in Programming Languages (RHPL 2025)

Aditya	Anand*,		Vijay	Sundaresan†,	Daryl	Maier†	and	Manas	Thakur*	
*IIT	Bombay,	†IBM	Canada

• Program Analysis and JIT (Just-In-Time) compilers for Java like languages.
• JITs prioritize fast decisions over precise analysis, resulting in conservative

optimization.

1

• Idea: Staged Static+Dynamic analysis for Managed Runtimes.
• Offload the costly analysis to static time.
• Use analysis results in the JIT to enable additional optimizations.

Brief Introduction

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

2

• Perform precise (context-, flow-, field-
sensitive) escape analysis statically.

• Use statically generated escape analysis
result to optimistically allocate objects
on stack at runtime.

• Optimization: Object Allocation

• By default, objects in Java are allocated on the heap.

• Stack Allocation: Allocate method local objects on the stack frame.

Staged Analysis

PLDI	24

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Escape Analysis

Indirection, Need GC

Faster access, No GC

3

PLDI	24

Optimistic Stack Allocation

• We need to have a fallback mechanism
to ensure functional correctness.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

• Can we always rely on the static
analysis result ??

• Features like Dynamic ClassLoading
(DCL), HotCode Replacement
(HCR), Callbacks can make your
static analysis result go unsound.

Example	for	Dynamic	ClassLoading	

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Dynamic ClassLoading Example

4

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Dynamic ClassLoading Example

5

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Dynamic ClassLoading Example

6

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Dynamic ClassLoading Example

7

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Dynamic ClassLoading Example

8

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Dynamic ClassLoading Example

9

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Dynamic ClassLoading Example

10

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Dynamic ClassLoading Example

11

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Stack Allocate
O4,	O5	and		O6

Dynamic ClassLoading Example

11

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Dynamically
loaded

16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

Dynamic ClassLoading Example

12

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Dynamic ClassLoading Example

13

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Incorrect allocation on
stack

Dynamic ClassLoading Example

14

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

Dynamic Heapification

16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Incorrect allocation on
stack

Dynamic ClassLoading Example

14

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

f

f

Heapify

Heapification

15

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

f

f

Heapification

16

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

f

f

f

Heapification

17

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

f

f

f

f

Heapification

18

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

ff

f

Heapification

19

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

ff

f

How to identify the need for heapification?

Heapification Checks

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

• JNI APIs used to perform stores in called C/C++ code. (Byte code: setObjectField.)

• Calls to native. (Byte code: putObject, putObjectOrdered, putObjectVolatile.)
• Throwing of exception. (Byte code: athrow.)

Heapification

19

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Summary and Moving Ahead

20

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

• Fallback as heapification allowed us to maintain functional correctness due to the
dynamism offered by the Language/VM

• Overall, one of the first approaches to soundly and efficiently use static (offline)
analysis results in a JIT compiler!

Is this the best we can do for stack allocation?

Can we go more aggressive?

Recent Works on Static + Dynamic Analysis

All these works use AOT-analysis
results to perform optimizations in

 JIT Compilers.
21

TOPLAS	19

CASCON	22

PLDI	24

SAS	22

FMSD	24

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Speculative Optimization in JIT Compilers
• Profile Information:

22

• Dynamic Class Hierarchy:

• Inlining Table:

Standard Speculative Optimizations

• Basic invocation, loop invariant values.

• Branch information, instance of checks.

• Type profiles at type-cast statements and polymorphic callsites.

• Information about loaded subclasses of a given class during execution.

• Information about the list of methods inlined at various callsites.
CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Conservative Fallback

Speculative Optimization in JIT Compilers
• Profile Information:

22

• Dynamic Class Hierarchy:

• Inlining Table:

Standard Speculative Optimizations

How can we get the best of static analysis and run-time information ??

• Basic invocation, loop invariant values.

• Branch information, instance of checks.

• Type profiles at type-cast statements and polymorphic callsites.

• Information about loaded subclasses of a given class during execution.

• Information about the list of methods inlined at various callsites.
CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Conservative Fallback

CoSSJIT: Combining Static Analysis and
Speculation in JIT Compilers

23

• Idea:
• Enrich Static Analysis results with possibility of speculation at run-time.
• Enable the JIT Compiler to perform speculative optimization based on the

static analysis results.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

OOPSLA	25

1. Polymorphic Callsites

24

1. class A {
2. static A global;  

 . . .
4. void foo(A z) {
5. A x = new A(); // O5
6. A y = new A(); // O6
7. x.f = new A(); // O7

. . .
14. z.bar(x);
15. } /* method foo */
16. } /* class A */

17. class B extends A {
18. void bar(A p2) { . . . }
19. } /* class B */

⊓ : {B, C } —> [O5],[O7] [Escaping]

20. class C extends A {
21. void bar(A p3) {
22. global = p3;
23. }
24. } /* class C */

Escapes

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. Polymorphic Callsites

25

1. class A {  
 . . .

4. void foo(A z) {
5. A x = new A(); // O5
6. A y = new A(); // O6
7. x.f = new A(); // O7

. . .
14. z.bar(x);
15. } /* method foo */
16. } /* class A */

17. class B extends A {
18. void bar(A p2) { . . . }
19. } /* class B */

20. class C extends A {
21. void bar(A p3) {
22. global = p3;
23. }
24. } /* class C */

Escapes

At runtime:
• Class Hierarchy (CHTable): C is not loaded.
• Most of the times z is of type “B”.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

A.foo() [. .] [z_14, {B},{O5, O7}]
polymorphic_cond

26

1. class A {  
 . . .

5. void foo(A p1) {
6. A y = new A(); // O6
 . . .
9. if(p1 instance A) {
 . . .
11. } else {
13. global = y;
14. }
15. y.f = p1;
16. } /* method foo */

⊓ : —> O6 (Escaping)

2. Branching

Escapes

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

27

1. class A {  
 . . .

5. void foo(A p1) {
6. A y = new A(); // O6
 . . .
9. if(p1 instance A) {
 . . .
11. } else {
13. global = y;
14. }
15. y.f = p1;
16. } /* method foo */

2. Branching

At runtime:
• The “if” branch is taken most
number of times.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

A.foo() [. .] [9,{O6}]
branching_cond

28

1. class A {
2. void foo() {
3. . . .
4. z.bar(x);
5. r.foobar(p, q);
6. } /* method foo */
7. void bar(A p1) { . . . }
8. void foobar(A p2) { . . . }
9. } /* class A */

10. class B extends A {
11. void bar(A p3) {
12. // p3’s pointee doesn’t escape
13. p3.f = new A(); // O13
14. p3.foobar(p3.f);
15. } /* method bar */
16. void foobar(A p4) { . . . }
17. } /* class B */
18. class C extends A { . . . }

O13 marked as Escaping.

3. Method Inlining

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

29

1. class A {
2. void foo() {
3. . . .
4. z.bar(x);
5. r.foobar(p, q);
6. } /* method foo */
7. void bar(A p1) { . . . }
8. void foobar(A p2) { . . . }
9. } /* class A */

10. class B extends A {
11. void bar(A p3) {
12. // p3’s pointee doesn’t escape
13. p3.f = new A(); // O13
14. p3.foobar(p3.f);
15. } /* method bar */
16. void foobar(A p4) { . . . }
17. } /* class B */
18. class C extends A { . . . }

Inline

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

3. Method Inlining

29

1. class A {
2. void foo() {
3. . . .
4. z.bar(x);
5. r.foobar(p, q);
6. } /* method foo */
7. void bar(A p1) { . . . }
8. void foobar(A p2) { . . . }
9. } /* class A */

10. class B extends A {
11. void bar(A p3) {
12. // p3’s pointee doesn’t escape
13. p3.f = new A(); // O13
14. p3.foobar(p3.f);
15. } /* method bar */
16. void foobar(A p4) { . . . }
17. } /* class B */
18. class C extends A { . . . }

Inline
x

₹foo

bar

On

O13 Callee object on caller’s stack frame
f

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

3. Method Inlining

A.foo() [. .] [4,B.bar(p3),{O13}]
inlining_cond

Summary

30

A::foo() [Direct_Allocation] [polymorphic_cond] [branching_cond] [inlining_cond]

ConditionalDirect

Statically generated results

JVM

JIT

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Algorithm in the JIT Compiler

31

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

1. Polymorphic Callsite
for each O in JIT_identified_objects(m):

 (CHm[c] ⊆ SAm[O][c]) ∨ (∀t ∈ SAm[O][c] Σ CPm(t) > ST)

2. Branching Conditions

for each O in JIT_identified_objects(m):

 (∀ b ∈ SAm[O][br] with Σ BPm(b) > ST)
St

at
ic

 R
es

O

α, β

CH
Ta

bl
e

α
c

Pr
of

ile val1α
β val2

St
at

ic
 R

es b1,b2

O Pr
of

ile val1b1

b2 val2

Algorithm in the JIT Compiler

32

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

3. Inlining Conditions

for each callsite c ∈ CallSitesm:
 Callersc = SAm[c]
 if ∃ n such that (n ∈ ITm[c] ∧ n ∈ Callersc):
 Ostatic = statically_marked_objects(m)
 mark all O ∈ Ostatic

St
at

ic
 R

es

O1

c,<m>

O2 On

<m>IT
ab

le c

Evaluation (Setup)

33

• Implementation:

Static analysis Runtime components:

• Benchmarks:
• DaCapo benchmark suites:

 (23.10-chopin and 9.12 MRI)

• SPECjvm 2008

• Evaluation schemes:
• BaseLine: Stack allocation with the

existing JIT scheme.

• CoSSJIT: Stack allocation with our
direct+conditional scheme.

• Compute:
• Enhancement in stack allocation.

• Impact on performance and garbage
collection.

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Evaluation (Stack Allocation)

35

Base Scheme (BaseLine) Conditional Scheme (CoSSJIT)

Benchmark Static
Count Dynamic Count Stack

Bytes
Static
Count Dynamic Count Stack

Bytes
Heapify
Count

avrora 12 104.2M	(38.0%) 3335MB 14 106.5M	(39.3%) 3391.4MB 0.4M

compress 8 0.01M	(3.29%) 1720MB 18 0.093M	(15.5%) 2.75MB 0M

graphchi 12 349M	(5.20%) 8327MB 109 1041.1M	(14.2%) 20020MB 0.0006M

h2 61 33M	(1.02%) 579MB 129 525M	(16.2%) 12749MB 6M

luindex 30 4.9M	(3.16%) 137MB 84 24.2M	(15.4%) 746MB 0.06M

pmd 24 1762M	(9.80%) 42295MB 92 1835M	(10.2%) 43468MB 0.2M

sunTlow 100 1077M	(20.0%) 27577MB 243 2286M	(34.7%) 56042MB 0.19M

signverify 15 0.24M	(0.86%) 6.8MB 40 3.25M	(6.34%) 102.2MB 0.5M

zxing 82 24.2M	(2.61%) 987.6MB 347 1539M	(16.4%) 52796.7MB 0.4M

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Evaluation (Stack Allocation)

35

Base Scheme (BaseLine) Conditional Scheme (CoSSJIT)

Benchmark Static
Count Dynamic Count Stack

Bytes
Static
Count Dynamic Count Stack

Bytes
Heapify
Count

avrora 12 104.2M	(38.0%) 3335MB 14 106.5M	(39.3%) 3391.4MB 0.4M

compress 8 0.01M	(3.29%) 1720MB 18 0.093M	(15.5%) 2.75MB 0M

graphchi 12 349M	(5.20%) 8327MB 109 1041.1M	(14.2%) 20020MB 0.0006M

h2 61 33M	(1.02%) 579MB 129 525M	(16.2%) 12749MB 6M

luindex 30 4.9M	(3.16%) 137MB 84 24.2M	(15.4%) 746MB 0.06M

pmd 24 1762M	(9.80%) 42295MB 92 1835M	(10.2%) 43468MB 0.2M

sunTlow 100 1077M	(20.0%) 27577MB 243 2286M	(34.7%) 56042MB 0.19M

signverify 15 0.24M	(0.86%) 6.8MB 40 3.25M	(6.34%) 102.2MB 0.5M

zxing 82 24.2M	(2.61%) 987.6MB 347 1539M	(16.4%) 52796.7MB 0.4M

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Stack Allocation: 1.4x Stack Bytes: 5.7x
(Less Heap Allocation)

Garbage Collection

36

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BaseLine CoSSJIT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BaseLine CoSSJIT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

20000

40000

60000

80000

X 2X 3X DEF

BaseLine CoSSJIT

graphchi luindex lusearch

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

100000

200000

300000

400000

X 2X 3X DEF

BaseLine CoSSJIT

sunTlow
Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

100000

200000

300000

400000

X 2X 3X DEF

BaseLine CoSSJIT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

5000

10000

15000

X 2X 3X DEF

BaseLine CoSSJIT

xalan zxing

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Garbage Collection

37

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BaseLine CoSSJIT

graphchi

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Garbage Collection

38

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BaseLine CoSSJIT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BaseLine CoSSJIT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

20000

40000

60000

80000

X 2X 3X DEF

BaseLine CoSSJIT

graphchi luindex lusearch

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

100000

200000

300000

400000

X 2X 3X DEF

BaseLine CoSSJIT

sunTlow
Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

100000

200000

300000

400000

X 2X 3X DEF

BaseLine CoSSJIT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

5000

10000

15000

X 2X 3X DEF

BaseLine CoSSJIT

xalan zxing

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Garbage Collection

38

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BaseLine CoSSJIT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BaseLine CoSSJIT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

20000

40000

60000

80000

X 2X 3X DEF

BaseLine CoSSJIT

graphchi luindex lusearch

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

100000

200000

300000

400000

X 2X 3X DEF

BaseLine CoSSJIT

sunTlow
Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

100000

200000

300000

400000

X 2X 3X DEF

BaseLine CoSSJIT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

5000

10000

15000

X 2X 3X DEF

BaseLine CoSSJIT

xalan zxing

GC Reduction at X: 35%

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Performance Improvement

11000

12000

13000

graphchi

N
or

m
al

iz
ed

 ti
m

e
(m

illi
 s

ec
)

Legend
BaseLine

CoSSJIT

260

265

270

luindex

N
or

m
al

ize
d

tim
e

(m
illi

 s
ec

)

Legend
BaseLine

CoSSJIT

940

950

960

970

980

990

lusearch

N
or

m
al

iz
ed

 ti
m

e
(m

illi
 s

ec
)

Legend
BaseLine

CoSSJIT

21000

21500

22000

22500

sunflow

N
or

m
al

iz
ed

 ti
m

e
(m

illi
 s

ec
)

Legend
BaseLine

CoSSJIT

3800

3840

3880

3920

xalan

N
or

m
al

ize
d

tim
e

(m
illi

 s
ec

)

Legend
BaseLine

CoSSJIT

12550

12600

12650

12700

zxing

N
or

m
al

ize
d

tim
e

(m
illi

 s
ec

)

Legend
BaseLine

CoSSJIT

39

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Performance Improvement

11000

12000

13000

graphchi

N
or

m
al

iz
ed

 ti
m

e
(m

illi
 s

ec
)

Legend
BaseLine

CoSSJIT

260

265

270

luindex

N
or

m
al

ize
d

tim
e

(m
illi

 s
ec

)

Legend
BaseLine

CoSSJIT

940

950

960

970

980

990

lusearch

N
or

m
al

iz
ed

 ti
m

e
(m

illi
 s

ec
)

Legend
BaseLine

CoSSJIT

21000

21500

22000

22500

sunflow

N
or

m
al

iz
ed

 ti
m

e
(m

illi
 s

ec
)

Legend
BaseLine

CoSSJIT

3800

3840

3880

3920

xalan

N
or

m
al

ize
d

tim
e

(m
illi

 s
ec

)

Legend
BaseLine

CoSSJIT

12550

12600

12650

12700

zxing

N
or

m
al

ize
d

tim
e

(m
illi

 s
ec

)

Legend
BaseLine

CoSSJIT

39

Performance Improvement: 6.7%

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Contributions by different Speculative Conditions

40

109

243

168
152

347

84

118
129

254

Benchmarks

0

100

200

300

400

graphchi sunflow xalan fop zxing luindex lusearch h2 compiler

Branching Inlining PolyCall Unconditional BaseLine

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Contributions by different Speculative Conditions

40

109

243

168
152

347

84

118
129

254

Benchmarks

0

100

200

300

400

graphchi sunflow xalan fop zxing luindex lusearch h2 compiler

Branching Inlining PolyCall Unconditional BaseLine

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

All speculative conditions make noticeable contributions.

CoSSJIT: Take Aways

41

• Overall,	one	of	the	Tirst	approaches	that	strike	a	balance	between	static	analysis	and	JIT	
speculation,	harnessing	the	best	of	both	the	worlds.

• Enriched	the	static	analysis	with	possibility	of	speculation	at	run-time.	
• Mechanism	in	the	JIT	compiler	to	incorporate	the	conditional	static	analysis	results.	

Precise Escape

Analysis Results
.res file

More Capable

JIT (SMC+ SMI

+ SBE)

OpenJ9

Soot

+

Enriched Static Analysis

Conditional Stack

Allocation Results

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

CoSSJIT: Take Aways

41

• Overall,	one	of	the	Tirst	approaches	that	strike	a	balance	between	static	analysis	and	JIT	
speculation,	harnessing	the	best	of	both	the	worlds.

• Enriched	the	static	analysis	with	possibility	of	speculation	at	run-time.	
• Mechanism	in	the	JIT	compiler	to	incorporate	the	conditional	static	analysis	results.	

Precise Escape

Analysis Results
.res file

More Capable

JIT (SMC+ SMI

+ SBE)

OpenJ9

Soot

+

Enriched Static Analysis

Conditional Stack

Allocation Results

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

CoSSJIT: Take Aways

41

• Overall,	one	of	the	Tirst	approaches	that	strike	a	balance	between	static	analysis	and	JIT	
speculation,	harnessing	the	best	of	both	the	worlds.

• Enriched	the	static	analysis	with	possibility	of	speculation	at	run-time.	
• Mechanism	in	the	JIT	compiler	to	incorporate	the	conditional	static	analysis	results.	

Precise Escape

Analysis Results
.res file

More Capable

JIT (SMC+ SMI

+ SBE)

OpenJ9

Soot

+

Enriched Static Analysis

Conditional Stack

Allocation Results

CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers

Thank You !!

