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• Languages like C, C++ : 

1

• Use static compilers (gcc, g++). 

• Generate executable which can be directly executed on machine. 

• Optimizations performed will be based on statically available information.

• First get compiled by a static compiler. 

• Compiled output is passed to a managed runtime for further execution.
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• A a = new A(); // On heap

• Benefits:

• Unburden programmer from making complex allocation-deallocation 
decisions and reduce the possibility of harmful memory bugs.

• Challenges:

• Access time is high.

• Garbage collection is an overhead.

• Managed runtime for Java allocates all objects on the heap.

• Unused objects automatically freed up by garbage collector. 
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Stack Allocation
• Memory allocated on stack:

• Less access time.

• Get freed up as soon as the allocating method returns.

• In case of Java:

• Escape analysis is performed: Just-in-time (JIT) compilation                      

• Very few objects get allocated on stack. 

• Escape Analysis

 — Imprecise

• Determines the set of objects that do not escape the allocating method.      
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Static Analysis for Stack Allocation

• Challenges:

• Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement 
(HCR) allows code changes.

• An object that was stack allocated based on static-analysis results, might 
start escaping at run-time.

• How to safely allocate objects on stack in a managed runtime?

• Perform precise (context-, flow-, field-sensitive) escape analysis statically.

• Use statically generated escape analysis result to optimistically allocate objects on 
stack at runtime.
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Motivating Example

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 

7



1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

Motivating Example

11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 

8



1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

Motivating Example

11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 

9



1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

Motivating Example

11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 

10



Motivating Example

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 

11



11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

Motivating Example

12



11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

Motivating Example

12



11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

Motivating Example

13



11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */ 

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

Stack Allocate
O4,    

Motivating Example

13



11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */
16. class B extends A
17.   void zar(A p, A q) {
18.      q.f = p;
19.   } /* method zar */ 
20. } /* class B */ 

Motivating Example

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

14



11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */
16. class B extends A
17.   void zar(A p, A q) {
18.      q.f = p;
19.   } /* method zar */ 
20. } /* class B */ 

Dynamically 
loaded

Motivating Example

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

14



11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */
16. class B extends A
17.   void zar(A p, A q) {
18.      q.f = p;
19.   } /* method zar */ 
20. } /* class B */ 

Motivating Example

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

15



11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */
16. class B extends A
17.   void zar(A p, A q) {
18.      q.f = p;
19.   } /* method zar */ 
20. } /* class B */ 

Motivating Example

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

15



11.   void zar(A p, A q) { . . .}
12.   void bar(A p1, A p2) {
13.      p1.f = p2; 
14.   } /* method bar */ 
15. } /* class A */
16. class B extends A
17.   void zar(A p, A q) {
18.      q.f = p;
19.   } /* method zar */ 
20. } /* class B */ 

Motivating Example

Incorrect 
allocation on 

stack

1. class A {
2.   A f;
3.   void foo(A q, A r) {
4.      A x = new A();  // O4 
5.      A y = new A();  // O5
6.      x.f = new A();  // O6
7.      A p = x.f;
8.      bar(p, y);
9.      r.zar(p, q); 
10.  } /* method foo */

16





Dynamic Heapification



Heapification

f

f

17



Heapification

f

f

17

Heapify



Heapification

f

f

18



Heapification

f

f

18



Heapification

f

f

19



f

Heapification

f

f

19



Heapification

f

f

f

20



Heapification

f

f

f

20



Heapification

f

f

f

f

20



Heapification

f

f

f

f

20



Heapification

f

f

f

f

20



Heapification

ff

f

18



Heapification

ff

f

18



Heapification

ff

f

How to identify the need for heapification?

18



Checking the Need for Heapification

21



Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

21



Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

• Return of references. (Byte code: return.)

21



Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

21



Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

• Throwing of exception. (Byte code: athrow.)

21



Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

• Throwing of exception. (Byte code: athrow.)

• Calls to native. (Byte code: athrow.)

21



Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

• Throwing of exception. (Byte code: athrow.)

• Calls to native. (Byte code: athrow.)

• JNI APIs used to perform stores in called C/C++ code.  
(Byte code: setObjectField.)
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Scenarios at Store Statement
1. class T {
2.   T f;
3.   void m1() {m2(. . .);}
4.   void m2() {m3(. . .);}
5.   void m3(T a, T b) {
6.      a.f = b;
7.   } /* method m3 */
8.} /* class T */
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Stack Walk — Costly
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• Use the stack-order in VM to re-order the list of stack 
allocated objects.

• Reduces cost of heapification checks.

• In case of cycles — result will not be valid only for one 
store statement.

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

• Statically create a partial order of stack-allocatable objects. 

[Ob, Oa]

Stack Walk
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• Benchmarks:
• DaCapo suites 23.10-chopin and 9.12 MRI.

• SPECjvm 2008.

• Implementation: 
• Static analysis: Soot

• Runtime components: OpenJ9 VM

• Compute:
• Enhancement in stack allocation.

• Impact on performance and garbage collection.

• Evaluation schemes:
• BASE: Stack allocation with the existing scheme.

• OPT: Stack allocation with our optimistic scheme.
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Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0 (0.0 %) 0M (0.00%) 0MB 32 (4.15%) 506.3M (6.9%) 9184.6MB

fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) 452M (13.92%) 10801MB

luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB

lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB

pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) 105M (14.2%) 2465MB

compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) 105M (6.17%) 2329MB

rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB

signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB
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h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) 452M (13.92%) 10801MB

luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB
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Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0   0M  0MB 32  506.3M  9184.6MB

fop 10  0.04M  1MB 50  9.8M  161.2MB

h2 61  29M  523MB 94  452M  10801MB

luindex 35  3M  98MB 89  5M  133MB

lusearch 30  25M  775MB 78  59M  1686MB

pmd 89  52M  1310MB 191  105M  2465MB

compiler 93  94M  1720MB 137  105M  2329MB

rsa 16  0.1M  46MB 35  7M  170MB

signverify 15  0.24M  6.8MB 51  2.1M  49.4MB

Stack Allocation: 71%     Stack Bytes: 54%
(Less Heap Allocation)
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More in Paper

• Implementation of opcodes for 
statements that can cause an object 
to escape, across JIT & interpreter. 

• Simulating longer runs of benchmarks 
with forced JIT compilation. 

• Analyzing allocation sites that lead to 
high number of allocations. 

• Cost of heapification. 

• Offline cost.
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• How to represent abstract objects in VM?

• A a = new A(); // O1               0: new #7 // class A 

• Main.foo() V [0] 



Related Work
• C2 just-in-time (JIT) compiler of the HotSpot VM uses escape analysis to decompose 

objects into scalar variables on the stack. 

• It uses connection graphs (which do not maintain points-to relationships directly but 
allow one to perform reachability checks faster) to perform synchronization elision and 
scalar replacement. 

• GraalVM uses a partial-escape analysis to enable scalar replacement in parts of a program 
when it cannot be performed throughout the program. 

• However stack allocation is possible in many scenarios where scalar replacement is not. 

• GraalVM also uses escape analysis results that works in presence of dynamic classloading 
for the C1 compiler. It reallocates objects replaced by scalars if the VM deoptimizes to the 
interpreter.
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