
14th August 2024

Optimistic Stack Allocation and Dynamic
Heapification for Managed Runtimes

Aditya Anand	
Advisor: Prof. Manas Thakur	

Indian Institute of Technology Bombay

Computer Systems in India Talk Series (Systems@India)

Content of the slides

Aditya Anand*, Solai Adithya†, Swapnil Rustagi†, Priyam Seth†, Vijay Sundaresan#, Daryl Maier#, V
Krishna Nandivada+ and Manas Thakur*. “Optimistic Stack Allocation and Dynamic

Heapification in Managed Runtimes”, PLDI 2024.	

*IIT Bombay, †IIT Mandi, #IBM Canada, +IIT Madras

Compilation in Programming Languages

1

Compilation in Programming Languages
• Languages like C, C++ :

1

Compilation in Programming Languages
• Languages like C, C++ :

1

• Use static compilers (gcc, g++).

• Generate executable which can be directly executed on machine.

• Optimizations performed will be based on statically available information.

Compilation in Programming Languages

• Languages like Java, C# and Scala:

• Languages like C, C++ :

1

• Use static compilers (gcc, g++).

• Generate executable which can be directly executed on machine.

• Optimizations performed will be based on statically available information.

Compilation in Programming Languages

• Languages like Java, C# and Scala:

• Languages like C, C++ :

1

• Use static compilers (gcc, g++).

• Generate executable which can be directly executed on machine.

• Optimizations performed will be based on statically available information.

• First get compiled by a static compiler.

• Compiled output is passed to a managed runtime for further execution.

STATIC DYNAMIC

Java Code Java Bytecode

Interpreter

JIT Compiler(s)

Javac Compiler Final Output

JVM

Program Translation in Java

2

STATIC DYNAMIC

Java Code Java Bytecode

Interpreter

JIT Compiler(s)

Javac Compiler Final Output

JVM

Program Translation in Java

• Static: Javac generates bytecode.

2

STATIC DYNAMIC

Java Code Java Bytecode

Interpreter

JIT Compiler(s)

Javac Compiler Final Output

JVM

Program Translation in Java

• Static: Javac generates bytecode. • Dynamic: Interpreter and JIT compiler
generate the final output.

2

Program Translation in Java

• Static: Javac generates bytecode.

JIT Compiler(s)

NativeCode

Optimizations

IR

ByteCode

3

• Dynamic: Interpreter and JIT compiler
generate the final output.

Objects in Java

4

Objects in Java
• Managed runtime for Java allocates all objects on the heap.

4

Objects in Java
• Managed runtime for Java allocates all objects on the heap.

• Unused objects automatically freed up by garbage collector.

4

Objects in Java

• A a = new A(); // On heap

• Managed runtime for Java allocates all objects on the heap.

• Unused objects automatically freed up by garbage collector.

4

Objects in Java

• A a = new A(); // On heap

• Benefits:

• Managed runtime for Java allocates all objects on the heap.

• Unused objects automatically freed up by garbage collector.

4

Objects in Java

• A a = new A(); // On heap

• Benefits:

• Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

• Managed runtime for Java allocates all objects on the heap.

• Unused objects automatically freed up by garbage collector.

4

Objects in Java

• A a = new A(); // On heap

• Benefits:

• Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

• Challenges:

• Managed runtime for Java allocates all objects on the heap.

• Unused objects automatically freed up by garbage collector.

4

Objects in Java

• A a = new A(); // On heap

• Benefits:

• Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

• Challenges:

• Access time is high.

• Managed runtime for Java allocates all objects on the heap.

• Unused objects automatically freed up by garbage collector.

4

Objects in Java

• A a = new A(); // On heap

• Benefits:

• Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

• Challenges:

• Access time is high.

• Garbage collection is an overhead.

• Managed runtime for Java allocates all objects on the heap.

• Unused objects automatically freed up by garbage collector.

4

Stack Allocation

5

Stack Allocation
• Memory allocated on stack:

5

Stack Allocation
• Memory allocated on stack:

• Less access time.

5

Stack Allocation
• Memory allocated on stack:

• Less access time.

• Get freed up as soon as the allocating method returns.

5

Stack Allocation
• Memory allocated on stack:

• Less access time.

• Get freed up as soon as the allocating method returns.

• Escape Analysis

5

Stack Allocation
• Memory allocated on stack:

• Less access time.

• Get freed up as soon as the allocating method returns.

• Escape Analysis
• Determines the set of objects that do not escape the allocating method.

5

Stack Allocation
• Memory allocated on stack:

• Less access time.

• Get freed up as soon as the allocating method returns.

• In case of Java:

• Escape Analysis
• Determines the set of objects that do not escape the allocating method.

5

Stack Allocation
• Memory allocated on stack:

• Less access time.

• Get freed up as soon as the allocating method returns.

• In case of Java:

• Escape analysis is performed: Just-in-time (JIT) compilation

• Escape Analysis
• Determines the set of objects that do not escape the allocating method.

5

Stack Allocation
• Memory allocated on stack:

• Less access time.

• Get freed up as soon as the allocating method returns.

• In case of Java:

• Escape analysis is performed: Just-in-time (JIT) compilation

• Escape Analysis

 — Imprecise

• Determines the set of objects that do not escape the allocating method.

5

Stack Allocation
• Memory allocated on stack:

• Less access time.

• Get freed up as soon as the allocating method returns.

• In case of Java:

• Escape analysis is performed: Just-in-time (JIT) compilation

• Very few objects get allocated on stack.

• Escape Analysis

 — Imprecise

• Determines the set of objects that do not escape the allocating method.

5

Static Analysis for Stack Allocation

6

Static Analysis for Stack Allocation
• Perform precise (context-, flow-, field-sensitive) escape analysis statically.

6

Static Analysis for Stack Allocation
• Perform precise (context-, flow-, field-sensitive) escape analysis statically.

• Use statically generated escape analysis result to optimistically allocate objects on
stack at runtime.

6

Static Analysis for Stack Allocation
• Perform precise (context-, flow-, field-sensitive) escape analysis statically.

• Use statically generated escape analysis result to optimistically allocate objects on
stack at runtime.

6

Static Analysis for Stack Allocation

• Challenges:

• Perform precise (context-, flow-, field-sensitive) escape analysis statically.

• Use statically generated escape analysis result to optimistically allocate objects on
stack at runtime.

6

Static Analysis for Stack Allocation

• Challenges:

• Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement
(HCR) allows code changes.

• Perform precise (context-, flow-, field-sensitive) escape analysis statically.

• Use statically generated escape analysis result to optimistically allocate objects on
stack at runtime.

6

Static Analysis for Stack Allocation

• Challenges:

• Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement
(HCR) allows code changes.

• An object that was stack allocated based on static-analysis results, might
start escaping at run-time.

• Perform precise (context-, flow-, field-sensitive) escape analysis statically.

• Use statically generated escape analysis result to optimistically allocate objects on
stack at runtime.

6

Static Analysis for Stack Allocation

• Challenges:

• Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement
(HCR) allows code changes.

• An object that was stack allocated based on static-analysis results, might
start escaping at run-time.

• How to safely allocate objects on stack in a managed runtime?

• Perform precise (context-, flow-, field-sensitive) escape analysis statically.

• Use statically generated escape analysis result to optimistically allocate objects on
stack at runtime.

6

Motivating Example

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

7

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Motivating Example

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

8

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Motivating Example

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

9

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Motivating Example

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

10

Motivating Example

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

11

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Motivating Example

12

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Motivating Example

12

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Motivating Example

13

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

Stack Allocate
O4,

Motivating Example

13

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */
16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

Motivating Example

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

14

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */
16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

Dynamically
loaded

Motivating Example

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

14

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */
16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

Motivating Example

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

15

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */
16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

Motivating Example

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

15

11. void zar(A p, A q) { . . .}
12. void bar(A p1, A p2) {
13. p1.f = p2;
14. } /* method bar */
15. } /* class A */
16. class B extends A
17. void zar(A p, A q) {
18. q.f = p;
19. } /* method zar */
20. } /* class B */

Motivating Example

Incorrect
allocation on

stack

1. class A {
2. A f;
3. void foo(A q, A r) {
4. A x = new A(); // O4
5. A y = new A(); // O5
6. x.f = new A(); // O6
7. A p = x.f;
8. bar(p, y);
9. r.zar(p, q);
10. } /* method foo */

16

Dynamic Heapification

Heapification

f

f

17

Heapification

f

f

17

Heapify

Heapification

f

f

18

Heapification

f

f

18

Heapification

f

f

19

f

Heapification

f

f

19

Heapification

f

f

f

20

Heapification

f

f

f

20

Heapification

f

f

f

f

20

Heapification

f

f

f

f

20

Heapification

f

f

f

f

20

Heapification

ff

f

18

Heapification

ff

f

18

Heapification

ff

f

How to identify the need for heapification?

18

Checking the Need for Heapification

21

Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

21

Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

• Return of references. (Byte code: return.)

21

Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

21

Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

• Throwing of exception. (Byte code: athrow.)

21

Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

• Throwing of exception. (Byte code: athrow.)

• Calls to native. (Byte code: athrow.)

21

Checking the Need for Heapification
• Dynamic heapification checks at each point where an object can escape:

• Return of references. (Byte code: return.)

• References stores. (Byte code: putfield, putstatic, aastore.)

• Throwing of exception. (Byte code: athrow.)

• Calls to native. (Byte code: athrow.)

• JNI APIs used to perform stores in called C/C++ code.
(Byte code: setObjectField.)

21

Checking the Need for Heapification

22

Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

22

Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

22

Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

22

Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

22

Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

22

Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

22

Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

22

rhs_obj >= lhs_obj

Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

22

rhs_obj >= lhs_obj

Checking the Need for Heapification
a.f = b;

lhs_obj rhs_obj

22

rhs_obj >= lhs_obj

Scenarios at Store Statement
1. class T {
2. T f;
3. void m1() {m2(. . .);}
4. void m2() {m3(. . .);}
5. void m3(T a, T b) {
6. a.f = b;
7. } /* method m3 */
8.} /* class T */

23

Scenarios at Store Statement
1. class T {
2. T f;
3. void m1() {m2(. . .);}
4. void m2() {m3(. . .);}
5. void m3(T a, T b) {
6. a.f = b;
7. } /* method m3 */
8.} /* class T */

23

Scenarios at Store Statement
1. class T {
2. T f;
3. void m1() {m2(. . .);}
4. void m2() {m3(. . .);}
5. void m3(T a, T b) {
6. a.f = b;
7. } /* method m3 */
8.} /* class T */

23

Scenarios at Store Statement
1. class T {
2. T f;
3. void m1() {m2(. . .);}
4. void m2() {m3(. . .);}
5. void m3(T a, T b) {
6. a.f = b;
7. } /* method m3 */
8.} /* class T */

23

Scenarios at Store Statement
1. class T {
2. T f;
3. void m1() {m2(. . .);}
4. void m2() {m3(. . .);}
5. void m3(T a, T b) {
6. a.f = b;
7. } /* method m3 */
8.} /* class T */

Stack Walk — Costly
23

Ordering Objects on Stack

Ordering Objects on Stack

24

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

24

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

24

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

• Statically create a partial order of stack-allocatable objects.

24

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

• Statically create a partial order of stack-allocatable objects.

24

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

• Statically create a partial order of stack-allocatable objects.

[Ob, Oa]

24

• Use the stack-order in VM to re-order the list of stack
allocated objects.

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

• Statically create a partial order of stack-allocatable objects.

[Ob, Oa]

24

• Use the stack-order in VM to re-order the list of stack
allocated objects.

• Reduces cost of heapification checks.

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

• Statically create a partial order of stack-allocatable objects.

[Ob, Oa]

24

• Use the stack-order in VM to re-order the list of stack
allocated objects.

• Reduces cost of heapification checks.

• In case of cycles — result will not be valid only for one
store statement.

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

• Statically create a partial order of stack-allocatable objects.

[Ob, Oa]

24

• Use the stack-order in VM to re-order the list of stack
allocated objects.

• Reduces cost of heapification checks.

• In case of cycles — result will not be valid only for one
store statement.

• A simple address-comparison check works majority of times.

Ordering Objects on Stack

• Statically create a partial order of stack-allocatable objects.

[Ob, Oa]

Stack Walk

24

Implementation and Evaluation

25

• Implementation:
• Static analysis: Soot

• Runtime components: OpenJ9 VM

Implementation and Evaluation

25

• Benchmarks:
• DaCapo suites 23.10-chopin and 9.12 MRI.

• SPECjvm 2008.

• Implementation:
• Static analysis: Soot

• Runtime components: OpenJ9 VM

Implementation and Evaluation

25

• Benchmarks:
• DaCapo suites 23.10-chopin and 9.12 MRI.

• SPECjvm 2008.

• Implementation:
• Static analysis: Soot

• Runtime components: OpenJ9 VM

• Evaluation schemes:
• BASE: Stack allocation with the existing scheme.

• OPT: Stack allocation with our optimistic scheme.

Implementation and Evaluation

25

• Benchmarks:
• DaCapo suites 23.10-chopin and 9.12 MRI.

• SPECjvm 2008.

• Implementation:
• Static analysis: Soot

• Runtime components: OpenJ9 VM

• Compute:
• Enhancement in stack allocation.

• Impact on performance and garbage collection.

• Evaluation schemes:
• BASE: Stack allocation with the existing scheme.

• OPT: Stack allocation with our optimistic scheme.

Implementation and Evaluation

25

Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0 (0.0 %) 0M (0.00%) 0MB 32 (4.15%) 506.3M (6.9%) 9184.6MB

fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) 452M (13.92%) 10801MB

luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB

lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB

pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) 105M (14.2%) 2465MB

compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) 105M (6.17%) 2329MB

rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB

signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

26

Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0 (0.0 %) 0M (0.00%) 0MB 32 (4.15%) 506.3M (6.9%) 9184.6MB

fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) 452M (13.92%) 10801MB

luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB

lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB

pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) 105M (14.2%) 2465MB

compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) 105M (6.17%) 2329MB

rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB

signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

27

Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0 (0.0 %) 0M (0.00%) 0MB 32 (4.15%) 506.3M (6.9%) 9184.6MB

fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) 452M (13.92%) 10801MB

luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB

lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB

pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) 105M (14.2%) 2465MB

compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) 105M (6.17%) 2329MB

rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB

signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

28

Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0 (0.0 %) 0M (0.00%) 0MB 32 (4.15%) 506.3M (6.9%) 9184.6MB

fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) 452M (13.92%) 10801MB

luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB

lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB

pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) 105M (14.2%) 2465MB

compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) 105M (6.17%) 2329MB

rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB

signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

29

Evaluation (Stack Allocation)
Non Optimistic Scheme (BASE) Optimistic Scheme (OPT)

Benchmark Static Count Dynamic Count Stack Bytes Static Count Dynamic Count Stack Bytes

graphchi 0 0M 0MB 32 506.3M 9184.6MB

fop 10 0.04M 1MB 50 9.8M 161.2MB

h2 61 29M 523MB 94 452M 10801MB

luindex 35 3M 98MB 89 5M 133MB

lusearch 30 25M 775MB 78 59M 1686MB

pmd 89 52M 1310MB 191 105M 2465MB

compiler 93 94M 1720MB 137 105M 2329MB

rsa 16 0.1M 46MB 35 7M 170MB

signverify 15 0.24M 6.8MB 51 2.1M 49.4MB

Stack Allocation: 71% Stack Bytes: 54%
(Less Heap Allocation)

29

Performance

0.275

0.300

0.325

0.350

0.375

compiler

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

29500

30000

30500

graphchi

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

5000

6000

7000

8000

h2

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

950

975

1000

1025

lusearch

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

505

510

515

520

525

530

pmd

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

300

400

500

600

700

fop

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

30

Performance

0.275

0.300

0.325

0.350

0.375

compiler

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

29500

30000

30500

graphchi

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

5000

6000

7000

8000

h2

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

950

975

1000

1025

lusearch

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

505

510

515

520

525

530

pmd

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

300

400

500

600

700

fop

N
or

m
al

ize
d

tim
e

(in
 s

ec
on

ds
)

Legend
BASE

OPT

Performance Improvement: 8.8%

30

Garbage Collection

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

X 2X 3X Def

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

40000

X 2X 3X DEF

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BASE OPT

compiler fop graphchi

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

4000

X 2X 3X DEF

BASE OPT

h2

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

40000

50000

X 2X 3X DEF

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

2000

4000

6000

X 2X 3X DEF

BASE OPT

lusearch pmd

31

Garbage Collection

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

X 2X 3X Def

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

40000

X 2X 3X DEF

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BASE OPT

compiler fop graphchi

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

4000

X 2X 3X DEF

BASE OPT

h2

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

40000

50000

X 2X 3X DEF

BASE OPT

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

2000

4000

6000

X 2X 3X DEF

BASE OPT

lusearch pmd

Fewer GC Cycles: 5.3%

31

More in Paper

• Implementation of opcodes for
statements that can cause an object
to escape, across JIT & interpreter.

• Simulating longer runs of benchmarks
with forced JIT compilation.

• Analyzing allocation sites that lead to
high number of allocations.

• Cost of heapification.

• Offline cost.

32

Take Aways

33

Take Aways

33

• An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

Take Aways

33

• An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

• Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

Take Aways

33

• An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

• Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

• Ensure functional correctness in
cases static analysis results do not
correspond to the runtime
environment.

Take Aways

33

• An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

• Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

• Ensure functional correctness in
cases static analysis results do not
correspond to the runtime
environment.

• Overall, one of the first approaches to soundly and efficiently
use static (offline) analysis results in a JIT compiler!

Take Aways

33

• An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

• Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

• Ensure functional correctness in
cases static analysis results do not
correspond to the runtime
environment.

• Overall, one of the first approaches to soundly and efficiently
use static (offline) analysis results in a JIT compiler!

Take Aways

33

• An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

• Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

• Ensure functional correctness in
cases static analysis results do not
correspond to the runtime
environment.

• Overall, one of the first approaches to soundly and efficiently
use static (offline) analysis results in a JIT compiler!

Take Aways

33 Thank You!!

• An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

• Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

• Ensure functional correctness in
cases static analysis results do not
correspond to the runtime
environment.

• Overall, one of the first approaches to soundly and efficiently
use static (offline) analysis results in a JIT compiler!

Take Aways

33 Questions?Thank You!!

• An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

• Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

• Ensure functional correctness in
cases static analysis results do not
correspond to the runtime
environment.

• Overall, one of the first approaches to soundly and efficiently
use static (offline) analysis results in a JIT compiler!

Take Aways

34 Questions?Thank You!!

• An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

• Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

• Ensure functional correctness in
cases static analysis results do not
correspond to the runtime
environment.

• Overall, one of the first approaches to soundly and efficiently
use static (offline) analysis results in a JIT compiler!

Backup

41

Object Representation in OpenJ9

2

Object Representation in OpenJ9
• J9 JIT: Uses tree IL as of its analysis and transformation phases.

2

Object Representation in OpenJ9
• J9 JIT: Uses tree IL as of its analysis and transformation phases.

• Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

2

Object Representation in OpenJ9
• J9 JIT: Uses tree IL as of its analysis and transformation phases.

• Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

2

Object Representation in OpenJ9
• J9 JIT: Uses tree IL as of its analysis and transformation phases.

• Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

2

• How to represent abstract objects in VM?

Object Representation in OpenJ9
• J9 JIT: Uses tree IL as of its analysis and transformation phases.

• Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

• We use the Bytecodes indices (BCI’s) corresponding to the bytecodes for each
abstract object.

2

• How to represent abstract objects in VM?

Object Representation in OpenJ9
• J9 JIT: Uses tree IL as of its analysis and transformation phases.

• Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

• We use the Bytecodes indices (BCI’s) corresponding to the bytecodes for each
abstract object.

2

• How to represent abstract objects in VM?

• A a = new A(); // O1 0: new #7 // class A

Object Representation in OpenJ9
• J9 JIT: Uses tree IL as of its analysis and transformation phases.

• Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

• We use the Bytecodes indices (BCI’s) corresponding to the bytecodes for each
abstract object.

2

• How to represent abstract objects in VM?

• A a = new A(); // O1 0: new #7 // class A

• Main.foo() V [0]

Related Work
• C2 just-in-time (JIT) compiler of the HotSpot VM uses escape analysis to decompose

objects into scalar variables on the stack.

• It uses connection graphs (which do not maintain points-to relationships directly but
allow one to perform reachability checks faster) to perform synchronization elision and
scalar replacement.

• GraalVM uses a partial-escape analysis to enable scalar replacement in parts of a program
when it cannot be performed throughout the program.

• However stack allocation is possible in many scenarios where scalar replacement is not.

• GraalVM also uses escape analysis results that works in presence of dynamic classloading
for the C1 compiler. It reallocates objects replaced by scalars if the VM deoptimizes to the
interpreter.

43

