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Compilation in Programming Languages

* Languages like C, C++:

» Use static compilers (gcc, g++).
* Generate executable which can be directly executed on machine.

» Optimizations performed will be based on statically available information.
* Languages like Java, C# and Scala:

 First get compiled by a static compiler.

* Compiled output is passed to a managed runtime for further execution.
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Objectsin Java

Managed runtime for Java allocates all objects on the heap.

Unused objects automatically freed up by garbage collector.

« A a = new AQ; // On heap

Benefits:

* Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

Challenges:
* Access time is high.

* Garbage collection is an overhead.
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Stack Allocation

* Memory allocated on stack:
 |.ess access time.

* Get freed up as soon as the allocating method returns.

* | Escape Analysis

* Determines the set of objects that do not escape the allocating method.

* In case of Java:
* Escape analysis is performed: Just-in-time (JIT) compilation — Imprecise

* Very few objects get allocated on stack.
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Static Analysis for Stack Allocation

Perform precise (context-, flow-, field-sensitive) escape analysis statically.

Use statically generated escape analysis result toloptimistically|allocate objects on

stack at runtime.

Challenges:

* Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement
(HCR) allows code changes.

* An object that was stack allocated based on static-analysis results, might
start escaping at run-time.

How to safely allocate objects on stack in a managed runtime?
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// Os
// Oe

11.
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13.
14.
15.

void zar(A p, A g) { . . .};

void bar(A p1, A p2) {
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t /* method bar */
+ /* class A */
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class A {

A f;

void foo(A g, A r)
A x = new AQ);
Ay = new AQ);
x.f = new AQ);
Ap
bar(p, y);

r.zar(p, 4);
¥ /* method foo */

X.f;
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1. class A { 11. void zar(Ap, Aqgq) { . . } foo
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1. class A { 11. void zar(A p, A qg) { . . .}é T
2. A f; 12. void bar(A pi1, A p2) { @—>
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Heapification

How to identify the need for heapification?
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Checking the Need for Heapification

* Dynamic heapification checks at each point where an object can escape:
* Return of references. (Byte code: return.)
* References stores. (Byte code: putfield, putstatic, aastore.)
* Throwing of exception. (Byte code: athrow.)
 Calls to native. (Byte code: athrow.)

* JNI APIs used to perform stores in called C/C++ code.
(Byte code: setObjectField.)
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else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

 Perform stack-walk and heapity if needed.
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. Class T {

ml
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method m3 */

.} /* class T */

m?2

m3

O, allocated here

O, allocated here

a.f=D>b

Case-1
(O, escapes

m1l

m?2

mJ3
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a.f=Db

| Case-2
Oy, doesn’t escape:

ml

m?2

ma3

0O, and O, both
allocated here

a.f = Db

Case-3
Oy, doesn’t escape:




Scenarios at Store Statement

. Class T { 5
T £ - ml |0, allocated here|ml |0} allocated here |ml

void m1() {m2(. . ')5}§

° .1 m2|0, allocated here|m2|O, allocated here|m2| O, and Oy both
void meC) m3C. . °>’}§ allocated here

void m3(T a, T b) {

a.f = b; m3 a.f=Db maJ af=D>Db ma3 a.f=>
1 /* method m3 */ ;
.+ /* class T */ | Clase-1 | (Clase-2 | . Case-3

O, escapes . Oy doesn’t escape’ b doesn’t escape

Stack Walk — Costly
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Implementation: * Benchmarks:
* Static analysis: Soot * DaCapo suites 23.10-chopin and 9.12 MRI.
®* Runtime components: Openl9 VM * SPECjvm 2008.

Evaluation schemes:
* BASE: Stack allocation with the existing scheme.

* OPT: Stack allocation with our optimistic scheme.

Compute:
* Enhancement in stack allocation.

* Impact on performance and garbage collection.



Evaluation (Stack Allocation)

Non Optimistic Scheme (BASE)

Optimistic Scheme (OPT)

Benchmark| Static Count | Dynamic Count | Stack Bytes | Static Count | Dynamic Count| Stack Bytes

graphchi 0 (0.0 %) OM (0.00%) OMB 32 (4.15%) 506.3M (6.9%) 9184.6MB
fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) | 452M (13.92%) 10801MB
luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB
lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB
pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) | 105M (14.2%) 2465MB
compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) | 105M (6.17%) 2329MB
rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB
signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB
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Evaluation (Stack Allocation)

Stack Allocation: 71%1* Stack Bytes: 54%*
(Less Heap Allocation)




Performance

B
O << 0O
-
eBO
O
O H4I1E4dlE
|
=
@)
i -
- QO
©
. A I (@)
S S S
o o o
LO o O
o o o
(ap)] o (q\|
(SPUOaS ul) awil pazilew.ioN
B
O <« 0O
-
eBO
(@)
O Hd1E4d]E
—
(@}
- 9O
> S S S S
o o o o o
N (o) L <t o
(Spu028s ul) awil pazilew.IoN
B
O << 0O
C
eBO
(@)
O Hd1E4d]E
—
. @
. Q
-
o
(@)
o o 0 S 0
~ Lo (Q\| o N~
0 ) ) ) QV
> o o o o

(SPUO23S ul) Wil PazIlew.IoON

BASE
OPT

Legend

O © o 1 o
o Al (q\| — —
O K] 9] K9] K]
(SPUO29S ul) BawWli] Pazilew.oON

i
O
o
(o)

BASE
OPT

Legend

i i
LO o
N~ L0
(0)) (0))

1000 -

!
LO
QA
o
—

(SpUO2as ul) awil pazilew.IoN

0 -
235
eBO
®))

O H4I1F4dlF
1
1 1 1 1
o o o o
o o o o
o o o o
(0 0) N~ © O

(SPUO2aS ul) awil pazilew.IoN

pmd

lusearch

h2

30



30

Performance

Performance Improvement: 8.8%1%




Garbage Collection
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Garbage Collection

Fewer GC Cycles: 5.3%+
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More in Paper

Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India
PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India
MANAS THAKUR, Indian Institute of Technology Bombay, India

The runtimes of managed object-oriented languages such as Java allocate objects on the heap, and rely on
automatic garbage collection (GC) techniques for freeing up unused objects. Most such runtimes also consist
of just-in-time (JIT) compilers that optimize memory access and GC times by employing escape analysis: an
object that does not escape (outlive) its allocating method can be allocated on (and freed up with) the stack
frame of the corresponding method. However, in order to minimize the time spent in JIT compilation, the
scope of such useful analyses is quite limited, thereby restricting their precision significantly. On the contrary,
even though it is feasible to perform precise program analyses statically, it is not possible to use their results
in a managed runtime without a closed-world assumption. In this paper, we propose a static+dynamic scheme
that allows one to harness the results of a precise static escape analysis for allocating objects on stack, while
taking care of both soundness and efficiency concerns in the runtime.

Implementation of opcodes for
statements that can cause an object
to escape, across JIT & interpreter.

Simulating longer runs of benchmarks
with forced JI'T compilation.

Analyzing allocation sites that lead to
high number of allocations.

Cost of heapification.

Oftline cost.
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e Overall, one of the first approaches to soundly and efficiently
use static (offline) analysis results in a JIT compiler!
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of just-in-time (JIT) compilers that optimize memory access and GC times by employing escape analysis: an
object that does not escape (outlive) its allocating method can be allocated on (and freed up with) the stack
frame of the corresponding method. However, in order to minimize the time spent in JIT compilation, the
scope of such useful analyses is quite limited, thereby restricting their precision significantly. On the contrary,
even though it is feasible to perform precise program analyses statically, it is not possible to use their results
in a managed runtime without a closed-world assumption. In this paper, we propose a static+dynamic scheme
that allows one to harness the results of a precise static escape analysis for allocating objects on stack, while
taking care of both soundness and efficiency concerns in the runtime.
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Object Representation in OpenJ9

* Jo JIT: Uses tree IL as of its analysis and transformation phases.

* Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

* How to represent abstract objects in VM?

* We use the Bytecodes indices (BCI’s ) corresponding to the bytecodes for each
abstract object.

« Aa=new AQ; // 01 O: new #7 // class A

e« Main.foo() V [0]




Related Work

* C2just-in-time (JIT) compiler of the HotSpot VM uses escape analysis to decompose
objects into scalar variables on the stack.

* It uses connection graphs (which do not maintain points-to relationships directly but
allow one to perform reachability checks faster) to perform synchronization elision and
scalar replacement.

* GraalVM uses a partial-escape analysis to enable scalar replacement in parts of a program
when it cannot be performed throughout the program.

* However stack allocation is possible in many scenarios where scalar replacement is not.

* GraalVM also uses escape analysis results that works in presence of dynamic classloading
for the C1 compiler. It reallocates objects replaced by scalars if the VM deoptimizes to the
Interpreter.
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