Optimistic Stack Allocation and Dynamic
Heapification for Managed Runtimes

Computer Systems in India Talk Series (Systems@India)

Aditya Anand

Advisor: Prof. Manas Thakur
Indian Institute of Technology Bombay

14t August 2024

Content of the slides

Aditya Anand*, Solai Adithyat, Swapnil Rustagit, Priyam Setht, Vijay Sundaresan#, Daryl Maier#, V
Krishna Nandivada+ and Manas Thakur*. “Optimistic Stack Allocation and Dynamic
Heapification in Managed Runtimes’, PLDI 2024.

*IIT Bombay, tIIT Mandi, #IBM Canada, *IIT Madras

Pl

COPENHAGEN 2024

Compilation in Programming Languages

Compilation in Programming Languages

* Languages like C, C++:

Compilation in Programming Languages

* Languages like C, C++:

» Use static compilers (gcc, g++).
* Generate executable which can be directly executed on machine.

» Optimizations performed will be based on statically available information.

Compilation in Programming Languages

* Languages like C, C++:

» Use static compilers (gcc, g++).
* Generate executable which can be directly executed on machine.

» Optimizations performed will be based on statically available information.

* Languages like Java, C# and Scala:

Compilation in Programming Languages

* Languages like C, C++:

» Use static compilers (gcc, g++).
* Generate executable which can be directly executed on machine.

» Optimizations performed will be based on statically available information.
* Languages like Java, C# and Scala:

 First get compiled by a static compiler.

* Compiled output is passed to a managed runtime for further execution.

Java Code

Program Translation in Java

-

Javac Compiler

STATIC

»Java Bytecode

JVM

Interpreter

DYNAMIC

JIT Compiler(s)

»Final Qutput

Program Translation in Java

STATIC DYNAMIC

JVM

Interpreter

»Final Qutput

JIT Compiler(s)

|
I

|

|

|

|

|

|

Java Code » Javac Compiler »Java Bytecode!
~ |

I

|

|

|

|

|

|

» Static: Javac generates bytecode.

Program Translation in Java

STATIC : DYNAMIC
| JVM
|
: Interpreter
|
|
Java Code » Javac Compiler »Java Bytecode : v »Final Qutput
. | -
| JIT Compiler(s)
|
|
|
|
|
» Static: Javac generates bytecode. * Dynamic: Interpreter and JIT compiler

generate the final output.

Program Translation in Java

JIT Compiler(s)
IR
ByteCode > i »NativeCode
@timizations
» Static: Javac generates bytecode. * Dynamic: Interpreter and JIT compiler

generate the final output.

Objectsin Java

Objectsin Java

* Managed runtime for Java allocates all objects on the heap.

Objectsin Java

* Managed runtime for Java allocates all objects on the heap.

* Unused objects automatically freed up by garbage collector.

Objectsin Java

* Managed runtime for Java allocates all objects on the heap.

* Unused objects automatically freed up by garbage collector.

e« A a=new AQ; // On heap

Objectsin Java

* Managed runtime for Java allocates all objects on the heap.

* Unused objects automatically freed up by garbage collector.

e« A a=new AQ; // On heap

 Benefits:

Objectsin Java

* Managed runtime for Java allocates all objects on the heap.

* Unused objects automatically freed up by garbage collector.

« A a = new AQ; // On heap

 Benefits:

* Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

Objectsin Java

Managed runtime for Java allocates all objects on the heap.

Unused objects automatically freed up by garbage collector.

« A a = new AQ; // On heap

Benefits:

* Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

Challenges:

Objectsin Java

Managed runtime for Java allocates all objects on the heap.

Unused objects automatically freed up by garbage collector.

« A a = new AQ; // On heap

Benefits:

* Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

Challenges:

* Access time is high.

Objectsin Java

Managed runtime for Java allocates all objects on the heap.

Unused objects automatically freed up by garbage collector.

« A a = new AQ; // On heap

Benefits:

* Unburden programmer from making complex allocation-deallocation
decisions and reduce the possibility of harmful memory bugs.

Challenges:
* Access time is high.

* Garbage collection is an overhead.

Stack Allocation

Stack Allocation

* Memory allocated on stack:

Stack Allocation

* Memory allocated on stack:

e [.ess access time.

Stack Allocation

* Memory allocated on stack:
 |.ess access time.

* Get freed up as soon as the allocating method returns.

Stack Allocation

* Memory allocated on stack:
 |.ess access time.

* Get freed up as soon as the allocating method returns.

| Escape Analysis

Stack Allocation

* Memory allocated on stack:
 |.ess access time.

* Get freed up as soon as the allocating method returns.

| Escape Analysis

* Determines the set of objects that do not escape the allocating method.

Stack Allocation

* Memory allocated on stack:
 |.ess access time.

* Get freed up as soon as the allocating method returns.

| Escape Analysis

* Determines the set of objects that do not escape the allocating method.

* In case of Java:

Stack Allocation

* Memory allocated on stack:
 |.ess access time.

* Get freed up as soon as the allocating method returns.

* | Escape Analysis

* Determines the set of objects that do not escape the allocating method.

* In case of Java:

* Escape analysis is performed: Just-in-time (JI'T) compilation

Stack Allocation

* Memory allocated on stack:
 |.ess access time.

* Get freed up as soon as the allocating method returns.

* | Escape Analysis

* Determines the set of objects that do not escape the allocating method.

* In case of Java:

* Escape analysis is performed: Just-in-time (JIT) compilation — Imprecise

Stack Allocation

* Memory allocated on stack:
 |.ess access time.

* Get freed up as soon as the allocating method returns.

* | Escape Analysis

* Determines the set of objects that do not escape the allocating method.

* In case of Java:
* Escape analysis is performed: Just-in-time (JIT) compilation — Imprecise

* Very few objects get allocated on stack.

Static Analysis for Stack Allocation

Static Analysis for Stack Allocation

* Perform precise (context-, flow-, field-sensitive) escape analysis statically.

Static Analysis for Stack Allocation

* Perform precise (context-, flow-, field-sensitive) escape analysis statically.

» Use statically generated escape analysis result to optimistically allocate objects on
stack at runtime.

Static Analysis for Stack Allocation

* Perform precise (context-, flow-, field-sensitive) escape analysis statically.

» Use statically generated escape analysis result to|optimistically|allocate objects on

stack at runtime.

Static Analysis for Stack Allocation

* Perform precise (context-, flow-, field-sensitive) escape analysis statically.

» Use statically generated escape analysis result to|optimistically|allocate objects on

stack at runtime.

* Challenges:

Static Analysis for Stack Allocation

* Perform precise (context-, flow-, field-sensitive) escape analysis statically.

» Use statically generated escape analysis result to|optimistically|allocate objects on

stack at runtime.

* Challenges:

* Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement
(HCR) allows code changes.

Static Analysis for Stack Allocation

* Perform precise (context-, flow-, field-sensitive) escape analysis statically.

» Use statically generated escape analysis result to|optimistically|allocate objects on

stack at runtime.

* Challenges:

* Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement
(HCR) allows code changes.

* An object that was stack allocated based on static-analysis results, might
start escaping at run-time.

Static Analysis for Stack Allocation

Perform precise (context-, flow-, field-sensitive) escape analysis statically.

Use statically generated escape analysis result toloptimistically|allocate objects on

stack at runtime.

Challenges:

* Dynamic Features: Dynamic Class Loading (DCL), Hot-Code Replacement
(HCR) allows code changes.

* An object that was stack allocated based on static-analysis results, might
start escaping at run-time.

How to safely allocate objects on stack in a managed runtime?

Motivating Example

1. class A { 11. void zar(A p, Ag) { . . .}
2. A f; 12. void bar(A p1, A p2) {

3. void foo(A g, A r) { 13. p1.T = p2;

4, A x =new AQ; // 0, 14. } /* method bar */

5. Ay =new AQQ; // Os 15. } /* class A */

0. X.f = new AQ); // O¢

/. Ap=x.T;

8. bar(p, y);

9. r.zar(p, q);

10. } /* method foo */

1. class A {

2. A f;

3. void foo(A g, A r)
4. A X = new AQ);
5. Ay = new AQ;
6. x.f = new AQ);
/. Ap=x.T;

8. bar(p, y);

9. r.zar(p, q);

10. } /* method foo */

Motivating Example

1
// Qg4

// Os
// Oe

11.
12.
13.
14.
15.

void zar(A p, A g) { . . .};

void bar(A p1, A p2) {
p1.T = p2;
t /* method bar */
+ /* class A */

foo

(x>

1.

© 00 ~N O U A W N

10.

class A {

A f;

void foo(A g, A r)
A x = new AQ);
Ay = new AQ);
x.f = new AQ;
Ap
bar(p, y);

r.zar(p, 4);
¥ /* method foo */

X.f;

Motivating Example

1
// Oy

// Os
// Oe

11.
12.
13.
14.
15.

void zar(A p, Ag) { . . } foo
void bar(A pi, A p2) { E
p1.T = p2; e -

¥ /* method bar */
} /* class A */

1.

© 00 ~N O O »h W N

10.

10

class A {

A f;

void foo(A g, A r)
A x = new AQ);
Ay = new AQ);
x.f = new AQ);
Ap
bar(p, y);

r.zar(p, 4);
¥ /* method foo */

X.f;

Motivating Example

1
// Oy

// Os
// Og

11.
12.
13.
14.
15.

void zar(A p, Ag) { . . } foo
void bar(A pi, A p2) { E

¥ /* method bar */
} /* class A */

Motivating Example

1. class A { 11. void zar(Ap, Aqgq) { . . } foo

2. A f; 12. void bar(A pi, A p2) { E

3. void foo(A g, A r) { 13. p1.t = pz; < » O,
4, A x =new AQ; // 0, 14. } /* method bar */ :

5. Ay =new AQQ; // Os 15. } /* class A */ é 4{
0. X.f = new AQ; // O¢ D - 06
/. Ap=Xx.T;

8. bar(p, y); 5

9. r.zar(p, q); y » Os5

10. } /* method foo */

11

Motivating Example

1. class A { 11. void zar(Ap, Aqgq) { . . } foo

2. A f; 12. void bar(A pi, A p2) { E

3. void foo(A q, A r) { 13. p1.t = p2; e (4
4, A x =new AQ; // 0. 14. } /* method bar */ :

5. Ay =new AQQ; // Os 15. } /* class A */ é 4{
0. X.f = new AQ; // O¢ D - 06
/. Ap=Xx.T;

8. bar(p, y); ;

9. r.zar(p, q); y » Os

10. } /* method foo */

12

Motivating Example

1. class A { 11. void zar(A p, A g { . . } foo

2. A f; 12. void bar(A pi, A p2) { E

3. void foo(A g, A r) { 13. p1.t = pz; X » 4
4, A x =new AQ; // 0. 14. } /* method bar */ :

5. Ay =new AQQ; // Os 15. } /* class A */ é 4{
0. X.f = new AQ; // O¢ D - O6
7. Ap=x.f; E r
8. bar(p, y); ‘
9. r.zar(p, q); y | Ox

10. } /* method foo */

12

Motivating Example

1. class A { 11. void zar(A p, Aq) { . . } foo

2. AT, 12. void bar(A pi, A p2) { E

3. void foo(A gq, A r) { 13. p1.t = pz; X - U4
4. Ax =new AQ; // 0, 14. 3} /* method bar */ g £
5. Ay =new AQQ; // 0s 15. } /* class A */ ¢
6. x.f = new AQ; // 0O¢ D » O¢
7. Ap=x.tf; f
8. bar(p, y); ¢
9. r.zar(p, q); y > Os

10. } /* method foo */

13

1. class A {

2. A f;

3. void foo(A g, A r)
4, A X = new AQ);
5. Ay = new AQ;
6. x.f = new AQ);
/. Ap=x.T;

8. bar(p, y);

9. r.zar(p, q);

10. } /* method foo */

13

Motivating Example

1
// Oy

// Os
// Oe

11.
12.
13.
14.
15.

void zar(A p, A q) { .
void bar(A p1, A p2) {
p1.T = p2;
t /* method bar */
+ /* class A */

Stack Allocate
04 Osand Oe

foo

Motivating Example

1. class A { 11. void zar(A p, Ag) { . . } foo

2. A f; 12. void bar(A pi, A pz2) { E

3. void foo(A g, A r) { 13. p1.t = pz; X » Oy
4. A x =new AQQ; // 04+ 14. } /* method bar */ E

5. Ay =new AQQ; // Os 15. } /* class A */ é 4{
0. Xx.f = new AQ); // O 16. class B extends A D - O6
/. Ap = x.f; 17. void zar(A p, A q) { E 7
3. bar(p, y); 18. q.f = p; ‘
9. r.zar(p, q); 19. } /* method zar */ y | O-

10. } /* method foo */ 20. + /* class B */

14

Motivating Example

1. class A { 11. void zar(A p, Ag) { . . } foo

2. A f; 12. void bar(A pi, A pz2) {

3. void foo(A g, A r) { 13. p1.t = pz; X » Oy
4. A x =new AQQ; // 04+ 14. } /* method bar */ E

5. Ay =new AQQ; // Os 15. } /* class A */ *f
0. Xx.f = new AQ); // O 16. class B extends A D - 06
/. Ap = x.f; 17. void zar(A p, A q) { E 7
3. bar(p, y); 18. q.f = p; ‘
9. r.zar(p, q); 19. } /* method zar */ y | O-
10. } /* method foo */ 20. + /* class B */ '

Dynamically
14 loaded

Motivating Example

1. class A { 11. void zar(Ap, Ag) { . . .}é o

2. A f; 12. void bar(A p1, A p2) { @—>

3. void foo(A g, A r) { 13. p1.f = pz; foo

4. Ax =newAQ; // 0. 14. 1} /* method bar */ 5

5. Ay =new AQ); // Os 15. } /* class A */ @—>O4 :
0. X.f = new A(Q); // Os 16. class B extends A g

7. Ap=x.f; 17. void zar(A p, A q) { @—PO(;/
8. bar(p, y); 18. q.f = p; $f

9. r.zar(p, q); 19. } /* method zar */ (>

10. } /* method foo */ 20. + /* class B */

15

Motivating Example

1. class A { 11. void zar(Ap, Aqg) { . . .}é o
2. A f; 12. void bar(A pi, A p2) { @_>
3. void foo(@ Ar) { 13. 01.f = p2; foo

4 A x =new AQ); // 0. 14. } /* method bar */ 5

5 Ay =new AQ); // Os 15. } /* class A */ @_>O4 :
o X.f = new A(Q); // Os 16. class B extends A g

7 Ap=x.f; 17. void zar(A p, @) { @—PO(;/
8 bar(p, y); 18. qg.f = ‘f

9 r'.zar'(p,; 19. t /* method zar */ (: O-
10. } /* method foo */ 20. + /* class B */

15

Motivating Example

1. class A { 11. void zar(A p, A qg) { . . .}é T
2. A f; 12. void bar(A pi1, A p2) { @—>
3. void foo(@ Ar) { 13. 1. f = pa; foo

4 A x = new AQ; // 0. 14. } /* method bar */ ?

5 Ay =new AQ); // Os 15. } /* class A */ ®_>O4 f
o X.f = new A(Q); // Os 16. class B extends A yf

7 Ap=x.f; 17. void zar(A p, @) { @——>O6/
8 bar(p, y); 18. q.f = ‘f

9 r'.zar'(p,; 19. } /* method zar */ () / O-
10. } /* method foo */ 20. + /* class B */

Incorrect
allocation on

16
stack

Dynamic Heapification

17

Stack

Heapification

17

Stack

Heapification

18

bar

Stack

Heapification

18

bar

Stack

Heapification

19

foo

bar

Stack

Heapification

19

foo

bar

Stack

Heapification

20

foo

bar

Stack

Heapification

20

foo

bar

Stack

Heapification

20

foo

bar

Stack

Heapification

20

foo

bar

Stack

Heapification

20

bar

Stack

Heapification

18

bar

Stack

Heapification

18

Heapification

18

Heapification

How to identify the need for heapification?

Checking the Need for Heapification

21

Checking the Need for Heapification

* Dynamic heapification checks at each point where an object can escape:

21

Checking the Need for Heapification

* Dynamic heapification checks at each point where an object can escape:

* Return of references. (Byte code: return.)

21

Checking the Need for Heapification

* Dynamic heapification checks at each point where an object can escape:
* Return of references. (Byte code: return.)

* References stores. (Byte code: putfield, putstatic, aastore.)

21

Checking the Need for Heapification

* Dynamic heapification checks at each point where an object can escape:
* Return of references. (Byte code: return.)
* References stores. (Byte code: putfield, putstatic, aastore.)

* Throwing of exception. (Byte code: athrow.)

21

Checking the Need for Heapification

* Dynamic heapification checks at each point where an object can escape:
* Return of references. (Byte code: return.)
* References stores. (Byte code: putfield, putstatic, aastore.)
* Throwing of exception. (Byte code: athrow.)

 Calls to native. (Byte code: athrow.)

21

Checking the Need for Heapification

* Dynamic heapification checks at each point where an object can escape:
* Return of references. (Byte code: return.)
* References stores. (Byte code: putfield, putstatic, aastore.)
* Throwing of exception. (Byte code: athrow.)
 Calls to native. (Byte code: athrow.)

* JNI APIs used to perform stores in called C/C++ code.
(Byte code: setObjectField.)

10

11

22

Checking the Need for Heapification

Procedure HeapificationCheckAtStore(lhs, rhs)
if rhs object is outside stack bounds then
| No heapification required.

else
/* The rhs object is present on the stack */
if lhs object is outside stack bounds then

‘ Heapity starting from the rhs object.
else

/* Both lhs and rhs objects are on the stack */

if rhs object has been allocated before the lhs object then
| No heapification required.

else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

 Perform stack-walk and heapity if needed.

10

11

22

Checking the Need for Heapification

Procedure HeapificationCheckAtStore(lhs, rhs)

/* The rhs object is present on the stack */

if rhs object is outside stack bounds then a.f = b;
| No heapification required. /
else lhs_obj rhs_obj

if lhs object is outside stack bounds then
‘ Heapity starting from the rhs object.
else

/* Both lhs and rhs objects are on the stack */

if rhs object has been allocated before the lhs object then
| No heapification required.

else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

 Perform stack-walk and heapity if needed.

10

11

22

Checking the Need for Heapification

Procedure HeapificationCheckAtStore(lhs, rhs)

/* The rhs object is present on the stack */

if (rhs object is outside stack bounds then) a.f = b;
| No heapification required. /
else th_Obj rhs_obj

if lhs object is outside stack bounds then
‘ Heapity starting from the rhs object.
else

/* Both lhs and rhs objects are on the stack */

if rhs object has been allocated before the lhs object then
| No heapification required.

else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

 Perform stack-walk and heapity if needed.

10

11

22

Checking the Need for Heapification

Procedure HeapificationCheckAtStore(lhs, rhs)

/* The rhs object is present on the stack */

if rhs object is outside stack bounds then a.f = b;
| No heapification required. /
else lhs_obj rhs_obj

if lhs object is outside stack bounds then
‘ Heapity starting from the rhs object.
else

/* Both lhs and rhs objects are on the stack */

if rhs object has been allocated before the lhs object then
| No heapification required.

else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

 Perform stack-walk and heapity if needed.

10

11

22

Checking the Need for Heapification

Procedure HeapificationCheckAtStore(lhs, rhs)

/* The rhs object is present on the stack */

if rhs object is outside stack bounds then a.f = b;
| No heapification required. /
else lhs_obj rhs_obj

if (lhs object is outside stack bounds then)
‘ Heapity starting from the rhs object.
else

/* Both lhs and rhs objects are on the stack */

if rhs object has been allocated before the lhs object then
| No heapification required.

else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

 Perform stack-walk and heapity if needed.

10

11

22

Checking the Need for Heapification

Procedure HeapificationCheckAtStore(lhs, rhs)

/* The rhs object is present on the stack */

if rhs object is outside stack bounds then a.f = b;
| No heapification required. /
else lhs_obj rhs_obj

if lhs object is outside stack bounds then
‘ Heapity starting from the rhs object.
else

/* Both lhs and rhs objects are on the stack */

if rhs object has been allocated before the lhs object then
| No heapification required.

else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

 Perform stack-walk and heapity if needed.

10

11

22

Checking the Need for Heapification

Procedure HeapificationCheckAtStore(lhs, rhs)

/* The rhs object is present on the stack */

if rhs object is outside stack bounds then a.f = b;
| No heapification required. /
else lhs_obj rhs_obj

if lhs object is outside stack bounds then
‘ Heapity starting from the rhs object.
else

/* Both lhs and rhs objects are on the stack */

if (rhs object has been allocated before the lhs object then)
| No heapification required.

else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

 Perform stack-walk and heapity if needed.

10

11

22

Checking the Need for Heapification

Procedure HeapificationCheckAtStore(lhs, rhs)

/* The rhs object is present on the stack */

if rhs object is outside stack bounds then
| No heapification required. /
else lhs_obj rhs_obj

if lhs object is outside stack bounds then
‘ Heapity starting from the rhs object.
else

/* Both lhs and rhs objects are on the stack */

if (rhs object has been allocated before the lhs object then) rhs_obj >= lhs_obj

| No heapification required.
else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

 Perform stack-walk and heapity if needed.

10

11

22

Checking the Need for Heapification

Procedure HeapificationCheckAtStore(lhs, rhs)

/* The rhs object is present on the stack */

if rhs object is outside stack bounds then a.f = b;
| No heapification required. /
else lhs_obj rhs_obj

if lhs object is outside stack bounds then
‘ Heapity starting from the rhs object.
else

/* Both lhs and rhs objects are on the stack */

if rhs object has been allocated before the lhs object then rhs_obj >= lhs_obj

| No heapification required.
else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

 Perform stack-walk and heapity if needed.

10

11

22

Checking the Need for Heapification

Procedure HeapificationCheckAtStore(lhs, rhs)

/* The rhs object is present on the stack */

if rhs object is outside stack bounds then a.f = b;
| No heapification required. /
else lhs_obj rhs_obj

if lhs object is outside stack bounds then
‘ Heapity starting from the rhs object.
else

/* Both lhs and rhs objects are on the stack */

if rhs object has been allocated before the lhs object then rhs_obj >= lhs_obj

| No heapification required.
else

/* The lhs object has been allocated in either the same frame or a deeper frame as
compared to the rhs object */

i (Perform stack-walk and heapity if needed)

T f;
vold
vo1ld

vold

P/

23

a.

Scenarios at Store Statement

. class T {

ml() {m2C. . .);}
m2Q) {m3C. . .3}
m3(T a, Tb) {
f = b;

method m3 */

.} /* class T */

Scenarios at Store Statement

. class T { 5
T f- -ml |0, allocated here

void m1() {m2(C. . .);}g
void m2() {m3(. . .>;}51n2 O, allocated here

void m3(T a, T b) { E
a.f = b; érnS a.f=D>

t /* method m3 */

.+ /* class T */ | Case-1
Oy escapes

23

Scenarios at Store Statement

. Class T { 5
T £ - ml |0, allocated here|m1 |0} allocated here

void m1Q) {m2C. . .);}
void m2() {m3(C. .)} m2 |0 allocated here |m2 |0, allocated here

void m3(T a, T b) { E
a.f = b: - m3 a.f =D m3 af=">

t /* method m3 */

.y /* class T */ | Case-1 S Case-2
.+ Opescapes Oy doesn’t escape

23

23

T f;
vold
vo1ld

vold

a.

P/

Scenarios at Store Statement

. Class T {

ml

i {m2C. .)3}
m2() {m3C. . .3}
m3(T a, T b) { 5
f = b;

method m3 */

.} /* class T */

m?2

m3

O, allocated here

O, allocated here

a.f=D>b

Case-1
(O, escapes

m1l

m?2

mJ3

O, allocated here

0, allocated here

a.f=Db

| Case-2
Oy, doesn’t escape:

ml

m?2

ma3

0O, and O, both
allocated here

a.f = Db

Case-3
Oy, doesn’t escape:

Scenarios at Store Statement

. Class T { 5
T £ - ml |0, allocated here|ml |0} allocated here |ml

void m1() {m2(. . ')5}§

° .1 m2|0, allocated here|m2|O, allocated here|m2| O, and Oy both
void meC) m3C. . °>’}§ allocated here

void m3(T a, T b) {

a.f = b; m3 a.f=Db maJ af=D>Db ma3 a.f=>
1 /* method m3 */ ;
.+ /* class T */ | Clase-1 | (Clase-2 | . Case-3

O, escapes . Oy doesn’t escape’ b doesn’t escape

Stack Walk — Costly

23

Ordering Objects on Stack

Ordering Objects on Stack

Ordering Objects on Stack

Ordering Objects on Stack

ml

m2| O, and Op both

allocated here

m3 a.f=Db

Case-3
Oy, doesn’t escape

24

Ordering Objects on Stack

 Statically create a partial order of stack-allocatable objects.

ml

m2| O, and O both
allocated here

m3 a.f=Db

Case-3
Oy, doesn’t escape:

24

Ordering Objects on Stack

 Statically create a partial order of stack-allocatable objects.

m2| O, and O both
allocated here

m3 a.f=Db

Case-3
Oy, doesn’t escape:

24

Ordering Objects on Stack

 Statically create a partial order of stack-allocatable objects.

m2| O, and O both
allocated here

[Ob, Oa]

m3 a.f=Db

Case-3
Oy, doesn’t escape:

24

Ordering Objects on Stack

* A simple address-comparison check works majority of times.

 Statically create a partial order of stack-allocatable objects.

ml
(y# 0o fimf 0

m2| O, and Op both
allocated here

[Ob, Oa]

~* Use the stack-order in VM to re-order the list of stack
m3 af=b ~ allocated objects.

Case-3
Oy, doesn’t escape:

24

Ordering Objects on Stack

* A simple address-comparison check works majority of times.

 Statically create a partial order of stack-allocatable objects.

ml
Q—Noa—f>0b

m2| O, and Op both
allocated here

[Ob, Oa]

~* Use the stack-order in VM to re-order the list of stack
m3 af=b ~ allocated objects.

» Reduces cost of heapification checks.

Case-3
Oy, doesn’t escape:

24

Ordering Objects on Stack

* A simple address-comparison check works majority of times.

 Statically create a partial order of stack-allocatable objects.

ml
O—Voa—f>ob

m2| O, and Op both
allocated here

[Ob, Oa]

¢ Use the stack-order in VM to re-order the list of stack
m3 af=b ~ allocated objects.

» Reduces cost of heapification checks.

. Case-3 -« Incase of cycles — result will not be valid only for one
Op doesn't escape’ + gore statement.

24

Ordering Objects on Stack

* A simple address-comparison check works majority of times.

 Statically create a partial order of stack-allocatable objects.

ml
Q—Noa—f>0b

m2| O, and Op both
allocated here

[Ob, Oa]

~* Use the stack-order in VM to re-order the list of stack
m3 af=b ~ allocated objects.

» Reduces cost of heapification checks.

. Case-3 -« Incase of cycles — result will not be valid only for one
Op doesnt escape’ 1 grore statement. Stack Walk

24

Implementation and Evaluation

Implementation and Evaluation

* Implementation:

® Static analysis: Soot

®* Runtime components: Openl]9 VM

25

Implementation and Evaluation

* Implementation:

® Static analysis: Soot

®* Runtime components: Openl]9 VM

25

 Benchmarks:

* DaCapo suites 23.10-chopin and 9.12 MRI.
* SPECjvm 2008.

25

Implementation and Evaluation

Implementation: * Benchmarks:
* Static analysis: Soot * DaCapo suites 23.10-chopin and 9.12 MRI.
®* Runtime components: Openl9 VM * SPECjvm 2008.

Evaluation schemes:
* BASE: Stack allocation with the existing scheme.

* OPT: Stack allocation with our optimistic scheme.

25

Implementation and Evaluation

Implementation: * Benchmarks:
* Static analysis: Soot * DaCapo suites 23.10-chopin and 9.12 MRI.
®* Runtime components: Openl9 VM * SPECjvm 2008.

Evaluation schemes:
* BASE: Stack allocation with the existing scheme.

* OPT: Stack allocation with our optimistic scheme.

Compute:
* Enhancement in stack allocation.

* Impact on performance and garbage collection.

Evaluation (Stack Allocation)

Non Optimistic Scheme (BASE)

Optimistic Scheme (OPT)

Benchmark| Static Count | Dynamic Count | Stack Bytes | Static Count | Dynamic Count| Stack Bytes

graphchi 0 (0.0 %) OM (0.00%) OMB 32 (4.15%) 506.3M (6.9%) 9184.6MB
fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) | 452M (13.92%) 10801MB
luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB
lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB
pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) | 105M (14.2%) 2465MB
compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) | 105M (6.17%) 2329MB
rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB
signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

26

Evaluation (Stack Allocation)

Non Optimistic Scheme (BASE)

Optimistic Scheme (OPT)

Benchmark| Static Count | Dynamic Count | Stack Bytes | Static Count | Dynamic Count| Stack Bytes

graphchi 0 (0.0 %) OM (0.00%) OMB 32 (4.15%) 506.3M (6.9%) 9184.6MB
fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) | 452M (13.92%) 10801MB
luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB
lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB
pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) | 105M (14.2%) 2465MB
compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) | 105M (6.17%) 2329MB
rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB
signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

27

Evaluation (Stack Allocation)

Non Optimistic Scheme (BASE)

Optimistic Scheme (OPT)

Benchmark| Static Count | Dynamic Count | Stack Bytes | Static Count | Dynamic Count| Stack Bytes

graphchi 0 (0.0 %) OM (0.00%) OMB 32 (4.15%) 506.3M (6.9%) 9184.6MB
fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) | 452M (13.92%) 10801MB
luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB
lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB
pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) | 105M (14.2%) 2465MB
compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) | 105M (6.17%) 2329MB
rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB
signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

28

Evaluation (Stack Allocation)

Non Optimistic Scheme (BASE)

Optimistic Scheme (OPT)

Benchmark| Static Count | Dynamic Count | Stack Bytes | Static Count | Dynamic Count| Stack Bytes

graphchi 0 (0.0 %) OM (0.00%) OMB 32 (4.15%) 506.3M (6.9%) 9184.6MB
fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) | 452M (13.92%) 10801MB
luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB
lusearch 30 (1.09%) 25M (3.23%) 775MB 78 (3.05%) 59M (7.4%) 1686MB
pmd 89 (1.09%) 52M (7.20%) 1310MB 191 (3.97%) | 105M (14.2%) 2465MB
compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) | 105M (6.17%) 2329MB
rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB
signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

29

29

Evaluation (Stack Allocation)

Stack Allocation: 71%1* Stack Bytes: 54%*
(Less Heap Allocation)

Performance

B
O << 0O
-
eBO
O
O H4I1E4dlE
|
=
@)
i -
- QO
©
. A I (@)
S S S
o o o
LO o O
o o o
(ap)] o (q\|
(SPUOaS ul) awil pazilew.ioN
B
O <« 0O
-
eBO
(@)
O Hd1E4d]E
—
(@}
- 9O
> S S S S
o o o o o
N (o) L <t o
(Spu028s ul) awil pazilew.IoN
B
O << 0O
C
eBO
(@)
O Hd1E4d]E
—
. @
. Q
-
o
(@)
o o 0 S 0
~ Lo (Q\| o N~
0))) QV
> o o o o

(SPUO23S ul) Wil PazIlew.IoON

BASE
OPT

Legend

O © o 1 o
o Al (q\| — —
O K] 9] K9] K]
(SPUO29S ul) BawWli] Pazilew.oON

i
O
o
(o)

BASE
OPT

Legend

i i
LO o
N~ L0
(0)) (0))

1000 -

!
LO
QA
o
—

(SpUO2as ul) awil pazilew.IoN

0 -
235
eBO
®))

O H4I1F4dlF
1
1 1 1 1
o o o o
o o o o
o o o o
(0 0) N~ © O

(SPUO2aS ul) awil pazilew.IoN

pmd

lusearch

h2

30

30

Performance

Performance Improvement: 8.8%1%

Garbage Collection

Y f
W BASE m OPT 40000 W BASE B OPT 30000 T 55500 W BASE B OPT
3000 2995
30466
" 30000 L 30140 "
O S 2 20000 +
S 2000 > S 17223 17150
>
© QO 20000 + O
3 O O 1179011830
o o
5 . 10000 -
S 1000 .
S S 10000 -+ 9
pa
11771166
0 0 - 0 -
X 2X 3X Def DEF X 2X 3X DEF
compiler fop graphchi
Y
© BASE & OPT @ BASE @ OPT 6000 T =504 W BASE B OPT
4000 — 29U 47556 47547
50000 47527 47298
7p]
§ 3000 + @ 40000 § 4000
S O O
3 3> 30000 O
O 2000 4+ O 0
© O 20000 S 2000
- 1003 9gg ° 2
S 10T 682 676 S 10000
389 388
0 - 0 0
X 2X 3X DEF X 2X 3X DEF
Max Heap (MB) Max Heap (MB) Max Heap (MB)
h2 lusearch pmd

31

31

Garbage Collection

Fewer GC Cycles: 5.3%+

32

More in Paper

Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India
PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India
MANAS THAKUR, Indian Institute of Technology Bombay, India

The runtimes of managed object-oriented languages such as Java allocate objects on the heap, and rely on
automatic garbage collection (GC) techniques for freeing up unused objects. Most such runtimes also consist
of just-in-time (JIT) compilers that optimize memory access and GC times by employing escape analysis: an
object that does not escape (outlive) its allocating method can be allocated on (and freed up with) the stack
frame of the corresponding method. However, in order to minimize the time spent in JIT compilation, the
scope of such useful analyses is quite limited, thereby restricting their precision significantly. On the contrary,
even though it is feasible to perform precise program analyses statically, it is not possible to use their results
in a managed runtime without a closed-world assumption. In this paper, we propose a static+dynamic scheme
that allows one to harness the results of a precise static escape analysis for allocating objects on stack, while
taking care of both soundness and efficiency concerns in the runtime.

Implementation of opcodes for
statements that can cause an object
to escape, across JIT & interpreter.

Simulating longer runs of benchmarks
with forced JI'T compilation.

Analyzing allocation sites that lead to
high number of allocations.

Cost of heapification.

Oftline cost.

33

Take Aways

33

Take Aways

* An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

33

Take Aways

* An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

» Used static escape analysis to

optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

33

Take Aways

* An important OO Optimization: *
Allocating method-local objects on
the stack frames of their allocating
methods.

» Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

Ensure functional correctness in @_, o
cases static analysis results do not '
correspond to the runtime
environment.

Stack

foo

Incorrect
allocation on
stack

bar

Take Aways

* An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

» Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

* Ensure functional correctness in @_, o
cases static analysis results do not '
correspond to the runtime
environment.

Stack

foo

Incorrect
allocation on
stack

bar

e Overall, one of the first approaches to soundly and efficiently
use static (offline) analysis results in a JIT compiler!

33

33

L)

Check for
updates

Take Aways

Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India
PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India
MANAS THAKUR, Indian Institute of Technology Bombay, India

The runtimes of managed object-oriented languages such as Java allocate objects on the heap, and rely on
automatic garbage collection (GC) techniques for freeing up unused objects. Most such runtimes also consist
of just-in-time (JIT) compilers that optimize memory access and GC times by employing escape analysis: an
object that does not escape (outlive) its allocating method can be allocated on (and freed up with) the stack
frame of the corresponding method. However, in order to minimize the time spent in JIT compilation, the
scope of such useful analyses is quite limited, thereby restricting their precision significantly. On the contrary,
even though it is feasible to perform precise program analyses statically, it is not possible to use their results
in a managed runtime without a closed-world assumption. In this paper, we propose a static+dynamic scheme
that allows one to harness the results of a precise static escape analysis for allocating objects on stack, while
taking care of both soundness and efficiency concerns in the runtime.

ional correctness in @_, o

nalysis results do not
o the runtime

Incorrect
allocation on
stack

0 soundly and efficiently
A JIT compiler!

Take Aways

ez Optimistic Stack Allocation and Dynamic Heapification for

Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India
PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India
MANAS THAKUR, Indian Institute of Technology Bombay, India

The runtimes of managed object-oriented languages such as Java allocate objects on the heap, and rely on

automatic garbage collection (GC) techniques for freeing up unused objects. Most such runtimes also consist

of just-in-time (JIT) compilers that optimize memory access and GC times by employing escape analysis: an

object that does not escape (outlive) its allocating method can be allocated on (and freed up with) the stack

frame of the corresponding method. However, in order to minimize the time spent in JIT compilation, the

scope of such useful analyses is quite limited, thereby restricting their precision significantly. On the contrary, °

even though it is feasible to perform precise program analyses statically, it is not possible to use their results P a er Ll nk
in a managed runtime without a closed-world assumption. In this paper, we propose a static+dynamic scheme p

that allows one to harness the results of a precise static escape analysis for allocating objects on stack, while

taking care of both soundness and efficiency concerns in the runtime.

Take Aways

ez Optimistic Stack Allocation and Dynamic Heapification for

Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India
PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India
MANAS THAKUR, Indian Institute of Technology Bombay, India

The runtimes of managed object-oriented languages such as Java allocate objects on the heap, and rely on

automatic garbage collection (GC) techniques for freeing up unused objects. Most such runtimes also consist

of just-in-time (JIT) compilers that optimize memory access and GC times by employing escape analysis: an

object that does not escape (outlive) its allocating method can be allocated on (and freed up with) the stack

frame of the corresponding method. However, in order to minimize the time spent in JIT compilation, the

scope of such useful analyses is quite limited, thereby restricting their precision significantly. On the contrary, °

even though it is feasible to perform precise program analyses statically, it is not possible to use their results P a er Ll nk
in a managed runtime without a closed-world assumption. In this paper, we propose a static+dynamic scheme p

that allows one to harness the results of a precise static escape analysis for allocating objects on stack, while

taking care of both soundness and efficiency concerns in the runtime.

Thank You!!

Take Aways

ez Optimistic Stack Allocation and Dynamic Heapification for

Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

SOLAI ADITHYA, Indian Institute of Technology Mandi, India
SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India
PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada Lab, Canada

DARYL MAIER, IBM Canada Lab, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India
MANAS THAKUR, Indian Institute of Technology Bombay, India

The runtimes of managed object-oriented languages such as Java allocate objects on the heap, and rely on

automatic garbage collection (GC) techniques for freeing up unused objects. Most such runtimes also consist

of just-in-time (JIT) compilers that optimize memory access and GC times by employing escape analysis: an

object that does not escape (outlive) its allocating method can be allocated on (and freed up with) the stack

frame of the corresponding method. However, in order to minimize the time spent in JIT compilation, the

scope of such useful analyses is quite limited, thereby restricting their precision significantly. On the contrary, °

even though it is feasible to perform precise program analyses statically, it is not possible to use their results P a er Ll nk
in a managed runtime without a closed-world assumption. In this paper, we propose a static+dynamic scheme p

that allows one to harness the results of a precise static escape analysis for allocating objects on stack, while

taking care of both soundness and efficiency concerns in the runtime.

Thank You!! Questions?

Take Aways

* An important OO Optimization:
Allocating method-local objects on
the stack frames of their allocating
methods.

» Used static escape analysis to
optimistically allocate identified
objects on stack to improve the
precision without thwarting the
efficiency.

* Ensure functional correctness in @_, o
cases static analysis results do not '
correspond to the runtime
environment.

Stack

foo

Incorrect
allocation on
stack

bar

e Overall, one of the first approaches to soundly and efficiently
use static (offline) analysis results in a JIT compiler!

34

Thank You!! Questions?

Backup

Object Representation in OpenJ9

Object Representation in OpenJ9

* Jo JIT: Uses tree IL as of its analysis and transformation phases.

Object Representation in OpenJ9

* Jo JIT: Uses tree IL as of its analysis and transformation phases.

* Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

Object Representation in OpenJ9

* Jo JIT: Uses tree IL as of its analysis and transformation phases.

* Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

Object Representation in OpenJ9

* Jo JIT: Uses tree IL as of its analysis and transformation phases.

* Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

* How to represent abstract objects in VM?

Object Representation in OpenJ9

* Jo JIT: Uses tree IL as of its analysis and transformation phases.

* Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

* How to represent abstract objects in VM?

* We use the Bytecodes indices (BCI’s) corresponding to the bytecodes for each
abstract object.

Object Representation in OpenJ9

* Jo JIT: Uses tree IL as of its analysis and transformation phases.

* Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

* How to represent abstract objects in VM?

* We use the Bytecodes indices (BCI’s) corresponding to the bytecodes for each
abstract object.

« Aa=new AQ; // 01 O: new #7 // class A

Object Representation in OpenJ9

* Jo JIT: Uses tree IL as of its analysis and transformation phases.

* Challenge: IL is very different from the linear Java Bytecode (as well as
the Java source code) available during static analysis.

* How to represent abstract objects in VM?

* We use the Bytecodes indices (BCI’s) corresponding to the bytecodes for each
abstract object.

« Aa=new AQ; // 01 O: new #7 // class A

e« Main.foo() V [0]

Related Work

* C2just-in-time (JIT) compiler of the HotSpot VM uses escape analysis to decompose
objects into scalar variables on the stack.

* It uses connection graphs (which do not maintain points-to relationships directly but
allow one to perform reachability checks faster) to perform synchronization elision and
scalar replacement.

* GraalVM uses a partial-escape analysis to enable scalar replacement in parts of a program
when it cannot be performed throughout the program.

* However stack allocation is possible in many scenarios where scalar replacement is not.

* GraalVM also uses escape analysis results that works in presence of dynamic classloading
for the C1 compiler. It reallocates objects replaced by scalars if the VM deoptimizes to the
Interpreter.

43

