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Abstract. In spite of decades of static-analysis research behind develop-
ing precise whole-program analyses, languages that use just-in-time (JIT)
compilers suffer from the imprecision of resource-bound analyses local to
the scope of compilation. Recent promising approaches bridge this gap by
splitting program analysis into two phases: a static phase that identifies
interprocedural dependencies across program elements, and a dynamic
phase that resolves those dependencies to generate final analysis results.
Though this approach is capable of generating precise analysis results
without incurring analysis cost in JIT compilers, such “staged analy-
ses” lack a theoretical backing. In particular, it is unclear if one could
transform a general whole-program analysis (that resolves dependencies
across all program elements) to a staged one that involves evaluation of
statically generated partial results later. Similarly, it would be interesting
if one could generate such “partial-result evaluators” in a way that can
also be used to argue about their correctness. In this paper, we propose
a novel model of static+dynamic partial analysis that addresses all these
points, based on the classic theory of partial evaluation. AQ1

We begin by shedding light on the enigmatic idea of partial evaluation
as well as the associated notion of Futamura projections to generate spe-
cialized program interpreters. We then describe partial analysis as the
process of evaluating dependencies across program elements with respect
to the statically available parts of a program, resulting into partial results.
Next, we devise a strategy (by deriving a novel notion of AM projections
from Futamura projections) to statically generate specialized evaluators
that can process partial results using dynamic dependencies, at run-
time. Later, we use our proposed model to straightforwardly establish
the correctness and precision properties of the idea of staging, indepen-
dent of the program analysis under consideration. We demonstrate the
applicability of our model by showcasing examples from non-trivial Java
program analyses, implementing the pipeline for one of them, and also
discussing future possibilities to extend the same. We believe that our
contributions in formulating this theory of partial analysis will signifi-
cantly extend the usage of existing partial analyzers, as well as promote
the design of new ones, for and even beyond Java. AQ2

Keywords: Staged analysis · Partial evaluation · Partial analysis

This research was partially supported by the project IITM/SERB/MTH/311 funded
by the Science and Engineering Research Board (SERB), Government of India.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Singh and C. Urban (Eds.): SAS 2022, LNCS 13790, pp. 1–30, 2022.
https://doi.org/10.1007/978-3-031-22308-2_4

A
ut

ho
r 

Pr
oo

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22308-2_4&domain=pdf
http://orcid.org/0000-0003-3752-3908
http://orcid.org/0000-0002-0740-9701
https://doi.org/10.1007/978-3-031-22308-2_4


2 A. Anand and M. Thakur

1 Introduction

A lion’s share of research in the programming language community is focused on
devising novel compilation technologies for performance. In order to generate a
performant binary, compilers for various programming languages perform a series
of program analyses and optimizations on the program being compiled. The
quality of the optimizations performed depends on the precision of the underlying
program analyses. The holy grail in the space of precise program analyses is the
ability to analyze the whole program. However, in case of languages such as Java
and C#, where the complete program is available only during run-time (e.g., in
Java Virtual Machines), performing whole-program analysis during just-in-time
(JIT) compilation is prohibitively expensive. On the other hand, owing to the
separate compilation assumption [2], it is possible to “partially analyze” various
parts of the program statically.

Partial analysis is a program analysis technique used in compilation systems
where the whole program is not available for analysis [8,9,18,28]. Tradition-
ally, this implies generating analysis results without the ability to incorporate
the effects of the unavailable parts of the program, which again loses precision.
However, for languages like Java and C# where program translation is spread
across static and JIT compilation, it is a promising idea to “stage” the program
analysis itself across the static and the dynamic phases of compilation. Recent
approaches such as the PYE framework [28] use this idea to statically generate
“dependencies” from various elements of the known program to the unknown
parts of the program, which are then resolved during JIT compilation. As an
example, consider the Java code snippet shown in Fig. 1; say the object(s) allo-
cated at line l are represented using the abstract object Ol. Here, what happens
to the object O3 depends on what happens to the respective first parameters in
methods A.bar and B.bar. Assuming all the code of class A is available stati-
cally whereas that of class B is available only during run-time, we can resolve
the dependencies related to A.bar statically, but for B.bar only during run-time.
The idea behind staging is to generate such dependencies, resolve them as much
as possible statically, and then complete the analysis results by resolving the
residual dependencies during run-time. A point worth noting though is that this
promising approach has stark similarities with the idea of partial evaluation.

Partial evaluation [14] is a well-known program optimization technique that
specializes a given program with respect to its statically available inputs. The
resultant partially evaluated program can later be executed with the dynamic
inputs, to generate the final output. The advantage of performing partial evalua-
tion is that the specialized program often executes faster compared to executing
the original program provided both static and dynamic inputs together. Apart
from specializing a program with its static inputs, partial evaluation has also
been used to specialize interpreters and their generators, based on the notion of
Futamura projections [12]. In this paper, drawing inspirations from the theory
of partial evaluation, we devise a model to stage the process of obtaining the
results of a whole-program analysis, by staging the same into static and dynamic
components, independent of the analysis being performed.
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Principles of Staged Static+Dynamic Partial Analysis 3

1 class A {

2 void foo(A a1) {

3 A a2 = new A(); // Object O3

4 a1.bar(a2);

5 }

6 void bar(A p) {...} }

7 class B extends A {

8 void bar(A q) {...}

9 }

Fig. 1. A Java code snippet to demonstrate generation of dependencies.

Observe that staging a whole-program analysis based on prior evaluation of
static dependencies and residual evaluation of dynamic dependencies, as noted
above and as illustrated in Fig. 2, would require a special component (say a
“partial-result evaluator”), which is capable of consuming dynamic inputs and
completing the analysis results. An important question that begs an answer
here is whether and how could one generate such special evaluators that can
“process partial results”. Further, in order to hold the efficiency advantages of
staging, it is important that the generation of such evaluators is itself efficient
and if possible, offloaded to the static compiler. The next question thence is,
can we design a “generator” that efficiently generates partial-result evaluators,
given the standard evaluator for a particular whole-program analysis. Finally,
assuming these components exist, can we assert that the staged analysis would
generate the same result as the corresponding whole-program analysis. In this
paper, we answer all these questions with a strong affirmation by modeling the
staging scheme based on the classic theory of partial evaluation.

We begin by formulating whole-program analysis as the process of computing
and resolving dependencies of various elements on different parts of the program.
Followed by this, we define partial analysis as the process of partially evaluating
those dependencies with respect to the statically available parts of a program,
thus generating partial results for the analysis being performed. We then devise
a strategy (called first AM projection) to “generate” an evaluator that can pro-
cess these partial results by performing residual resolution using the evaluated
values of dynamically available dependencies. Later, to improve the efficiency
of generating such partial-result evaluators for different analyses, we propose a
series of specializations (called second and third AM projections). Finally, illu-
minating the similarities between our model of partial analysis and the theory
of partial evaluation, we prove that the results generated by an analysis staged
using our scheme would be the same as the ones generated by its whole-program
version.

In order to validate the concepts presented in our manuscript, we imple-
mented prototypes of the different components of our staging scheme. Specifi-
cally, we first designed a simple evaluator that could resolve a set of dependencies
and generate the analysis result for a given program element. This evaluator is
written in a way that in case of staged analysis (where only static dependencies
can be resolved initially), it generates a partial result. We next implemented a
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4 A. Anand and M. Thakur

Fig. 2. Generation of partial-result evaluators.

specializer that takes the above evaluator and specializes it with the given par-
tial result, to generate the partial-result evaluator. This partial-result evaluator
can take evaluated values of dynamic dependencies as input and generate the
final analysis result(s). Notably, such partial-result evaluators are independent
of the way dependencies are generated for a particular analysis, agnostic of the
tiered nature of modern managed runtimes, and can be invoked as soon as the
values of dynamic dependencies are available. Our prototype demonstrates this
by using dependencies generated for escape analysis [7,27] of Java programs,
generating partial-result evaluators for abstract objects therein, and invoking
them for dependencies on methods from the Java class library. Further, though
the example analysis is based on method summaries, the idea of staging can be
applied to other models of program analysis as well (as long as the dependencies
can be categorized into static and dynamic components).

Having described partial-result evaluators and their generators in the said
form (which describes standard staging), we observe that certain ways mod-
ern tiered runtimes (such as JVMs) operate raise few interesting questions. For
example: “Can residual dependencies be always resolved?” “What if at certain
execution points all the dynamic inputs are not available?” “In case resolution
cannot proceed, can we generate a more precise value than falling back to the
most conservative solution?” We discuss possible directions to address these
questions, along with drawing connections with few other ways of performing
program analysis, as interesting future extensions to the foundational model of
staged static+dynamic partial analysis proposed in this paper.

Contributions:

– We explain partial evaluation and Futamura projections in context of speed-
ing up the execution of programs and of the generation of program translators,
in a lucid and easy-to-understand manner.

– We formalize the definition of partial analysis and devise a scheme to stage
whole-program analyses into static and dynamic components, along with a
novel notion of AM projections.

– We establish the correctness and precision properties of our staging scheme,
based on results from the theory of partial evaluation.
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Principles of Staged Static+Dynamic Partial Analysis 5

– We validate the presented concepts by implementing a prototype that gener-
ates partial-result evaluators independent of the analysis under consideration.

The rest of the paper is organized as follows. In Sect. 2, we give an overview
of relevant concepts from an existing staging framework required for further
reading of the paper. In Sect. 3, we describe partial evaluation and Futamura
projections in a readily comprehensible manner. We then present our staging
scheme for whole-program analysis, along with the AM projections for gener-
ating partial-result evaluators, in Sect. 4. We describe the details of our proto-
type implementation to validate the presented concepts in Sect. 5. In Sect. 6, we
highlight few of the challenges posed by contemporary programming-language
runtimes, possible ways to deal with the same, as well as connections of our
staging scheme with few other ways of performing program analysis. Finally, we
discuss related work in Sect. 7, and conclude the paper in Sect. 8.

2 Background: The PYE Framework

To address the problem of imprecision of program analysis in JIT compilers,
Thakur and Nandivada [28] propose a two-step solution called the PYE (Precise
Yet Efficient) framework. PYE uses the concept of partial analysis [9] to generate
partial results for all the statically analyzable parts of a program, and uses those
results during run-time to generate the final result. In order to account for the
unavailability of libraries while analyzing applications (and vice-versa) without
losing precision, PYE generates dependencies across the elements of a program
as conditional values statically, and evaluates them during run-time. We next
describe the generation and evaluation of such conditional values, along with a
representation that fits in with the notations that we use throughout this paper.

2.1 Conditional Values

Given a method m in a program P , a traditional whole-program analysis ψ
generates a summary fm mapping each program element x ∈ m in the domain D
of the analysis to one of the values in the set of dataflow values Val for that
analysis. Thus, fm(x) denotes the analysis result for the element x present in
method m. As an instance, for escape analysis [7], the set D could consist of all
the abstract objects allocated in the method m and the set Val could be {D,E},
denoting DoesNotEscape and Escapes, respectively.

On the other hand, let gm(x) represent the set of conditional values for a
program element x present in methodm. A conditional value denotes dependence
on another program element, and is defined in PYE as a 3-length tuple 〈Θ, v, v′〉,
where Θ = 〈u, y〉 represents the dependee element y in method u, and v and v′

are values from the lattice Val of the traditional analysis. A conditional value
〈〈n, y〉, v, v′〉 can be evaluated to obtain v′ if the analysis result fn(y) equals v.

For example, consider the code shown in Fig. 3. If the analysis ψ being per-
formed is escape analysis, then the set gA.foo(O4) of conditional values that deter-
mines the escape status of the abstract object O4 allocated at line 4 is:
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6 A. Anand and M. Thakur

1 class A {

2 void foo(B b) {

3 A a1 = new A(); // Object O3

4 A a2 = new A(); // Object O4

5 a1.bar(a2);

6 L l1 = new L(); // Object O6

7 l1.lib(a2); }

8 void bar(A p1) {

9 // no assignment to p1

10 } }

1 class L {

2 // A library class

3 void lib(A r1) {

4 // A library method

5 ...

6 } }

Fig. 3. A Java code snippet to demonstrate static+JIT analysis. Class L is a library
class not available during the analysis of the application class A.

gA.foo(O4) = {〈〈A.bar, p1〉,D,D〉, 〈〈L.lib, r1〉,D,D〉,
〈〈A.bar, p1〉, E,E〉, 〈〈L.lib, r1〉, E,E〉}

(1)

Here, the set of conditional values indicates that the escape status of O4

depends on the escape statuses of the first parameters of the methods A.bar and
L.lib. The conditional values denoting dependence on class A can be resolved
statically, whereas those depending on the library class L are resolved at run-
time. Note that we are directly using the names of parameters (that is, p1 and r1)
in the conditional values for brevity; in practice they would be placeholders
representing the first parameter of the corresponding method.

2.2 Evaluation of Conditional Values

Given a set gm(x) of conditional values generated for an analysis ψ, PYE eval-
uates them at run-time using an evaluator; we denote the same as CEvalψ (see
Fig. 4). CEvalψ takes gm(x) along with the analysis results for all the dependen-
cies contained therein (INgm(x) in Fig. 4), and generates fm(x) as follows:

fm(x) = � Λ-

T ∈gm(x)
�T � (2)

where T = 〈〈n, y〉, v, v′〉 is resolved as:

�〈〈n, y〉, v, v′〉� = (fn(y) == v) ? v′ : ⊥ (3)

⊥ being the most precise element in the lattice of the analysis ψ.
Using Eqs. 2 and 3, CEvalψ can evaluate the conditional values for each

program element and generate final results for the analysis ψ. Note that when a
dependence in gm(x) cannot be evaluated statically, PYE takes meet simply as
a union of the conditional values present therein.

For example, evaluating T = 〈〈A.bar, p1〉,D,D〉 in gA.foo(O4) amounts to
analyzing the method A.bar (to obtain fA.bar), then looking up the escape status
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Principles of Staged Static+Dynamic Partial Analysis 7

Fig. 4. Whole-program analysis.

of the abstract object pointed-to by p1 (i.e. the escape status fA.bar(Op1), if p
points to Op1), and then checking if it equals D; if yes, then T gets evaluated
to D, else to the most precise element of the analysis lattice (which also happens
to be D for escape analysis). Finally, after evaluating each conditional value in
gA.foo(O4), we can use Eq. 2 to compute the meet of the individual evaluated
values, in order to obtain the final analysis result fA.foo(O4).

The approach of offloading complex analyses to static time and finishing the
results during run-time can be used to perform various kinds of program anal-
yses, and has been used in the past for escape analysis to elide synchronization
and points-to analysis to elide null-checks [28], and even to perform dependence
analysis for parallelizing loops [25]. In general, this approach can be used for any
analysis with a finite lattice (to generate a finite number of conditional values),
as discussed in detail in prior work [28].

In this paper, we develop a model of staged static+dynamic partial analyses,
which allows us to straightforwardly prove the correctness and precision of the
idea of staging as discussed above. We start with shedding light on the enig-
matic [23] theory of partial evaluation and Futamura projections in a novel way
(Sect. 3), and then use it to describe our model for partial analysis (Sect. 4).

3 Partial Evaluation and Futamura Projections

Partial evaluation [14] is a program evaluation technique that specializes a pro-
gram with respect to its available inputs. The specialized program can take the
remaining input1 and generate the same output as the original program. The
program that specializes other programs in this manner is called a partial evalu-
ator (traditionally referred to as Mix). This way of specializing a program P with
respect to a statically available input in1 to generate the specialized program
Pin1 that can take the remaining input in2, often speeds up the overall execution
as well. Thus, if the time taken by Mix to specialize P is TMix(P, in1), the time
taken by Pin1 to generate the final output is TPin1 (in2), and the time taken by the
original program P to generate the output in a single run is TP(in1, in2), then
partial evaluation is often advantageous, as:

TMix(P, in1) + TPin1 (in2) < TP(in1, in2)

1 Note that at the machine level, there is an interpreter that actually executes the
program along with its input; we are simply avoiding verbosity here.
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8 A. Anand and M. Thakur

Fig. 5. Partial evaluation of program P using in1.

In context of just-in-time (JIT) compilers, the time spent in performing pro-
gram analysis gets added to the execution time of the program, thus making
whole-program analysis during JIT compilation practically infeasible. Conse-
quently, JIT compilers resort to very imprecise (e.g., intraprocedural) analyses.
Thus, motivated by the possible efficiency advantages of partial evaluation, a
promising way to obtain whole-program analysis results efficiently during JIT
compilation is to perform partial analysis of the statically available program, and
then complete the partial results during JIT compilation. In order to establish
that this way of staging whole-program analysis across static and JIT compila-
tion is correct, in this paper, we formalize a theory of partial analysis based on
the prior theory of partial evaluation.

We now present an intuitive formulation of partial evaluation, along with
the projections proposed by Futamura [12] to describe the generation of various
partial evaluators; we extend this formulation to partial analysis in Sect. 4.

3.1 Partial Evaluation

Consider the partial evaluation scheme shown in Fig. 5. For a given program
P and its available input in1, the partial evaluator Mix generates the residual
program Pin1 . This partially evaluated program, when given the remaining input
in2, yields the same result as running the original program on all of the inputs:

�Pin1�(in2) = �P �(in1, in2)

where �Pin1�(in2) denotes the evaluation of Pin1 with in2 as input, and
�P�(in1, in2) denotes the evaluation of P with in1 and in2 as inputs. The idea
behind partial evaluation is that if the input in2 changes more frequently than
the input in1, then evaluating the partially evaluated program Pin1 on in2 will
be faster than evaluating P on the complete input.

Partial evaluation can also be used to generate specialized versions of higher
levels of abstraction in the program translation ecosystem. For example, an inter-
preter is a program that takes other programs along with their inputs and gen-
erates the output for those programs. “What if we use the idea of partial eval-
uation to specialize an interpreter with respect to a given input program? We
get a faster interpreter for that program!” This specialization was described by
Futamura as the first Futamura projection (FP), as discussed next.
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Principles of Staged Static+Dynamic Partial Analysis 9

Fig. 6. Futamura projections in partial evaluation. Note that the three Mixes are the
same specializers; we have added subscripted numbers for brevity in referencing them.

3.2 First Futamura Projection

The first Futamura projection describes how to specialize an interpreter for a
given source program; see Fig. 6 (1st FP). Here, the partial evaluator (Mix(1))
essentially applies the interpreter for a language S to a given source program PS
and generates a specialized interpreter, as illustrated by the equation below:

�Mix(1)�(InterpreterS)(PS) = Specialized InterpreterS for PS

The generated specialized interpreter can directly take the inputs of the pro-
gram for which it was specialized and produce the final output. Observe that
the behavior of the specialized interpreter is similar to how the binary produced
by a compiler (i.e. Compiled Output, see Fig. 6) takes the input of the source
program and generates final output. “Can we use the idea of partial evalua-
tion to generate a higher order program, which when given a source program as
input, generates its compiled version faster?” This is achieved using the second
Futamura projection, as discussed next.

3.3 Second Futamura Projection

The second Futamura projection describes how to specialize the specializer
(Mix(1)) used in first Futamura projection with the interpreter for a given pro-
gramming language S; see Fig. 6 (2nd FP). Here, the specializer (Mix(2)) takes the
specializer itself as one of the inputs along with the interpreter, and generates a
specialized Mix(1) for language S as the output, as shown below:

�Mix(2)�(Mix(1))(InterpreterS) = Specialized Mix(1) for S
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10 A. Anand and M. Thakur

The generated specialized Mix(1) can directly take a program PS in the language
S as input and generate a specialized interpreter for PS. Observe that the behav-
ior of the specialized Mix(1) is similar to how a source program PS written in
a language S is compiled. Hence the output of the second Futamura projection
can also be called a Compiler (see Fig. 6). “Can we again use the idea of partial
evaluation to generate another higher order program, which when given an inter-
preter for programs written in S, efficiently generates a compiler for programs
in S?” This is achieved using the third Futamura projection, as discussed next.

3.4 Third Futamura Projection

The third Futamura projection describes how to specialize the specializer
(Mix(2)) used in second Futamura projection with itself; see Fig. 6 (3rd FP). Here,
the specializer (Mix(3)) takes the specializer itself as both the inputs, and gen-
erates a specialized Mix(2) as the output, as illustrated by the equation below:

�Mix(3)�(Mix(2))(Mix(2)) = Specialized Mix(2)

The generated specialized Mix(2) can directly take an interpreter for a lan-
guage S as input and generate a compiler for programs written in S as the
output. Hence the specialized Mix(2) can also be called a Compiler Generator
for programs written in the language S. Note that it is possible to extend this
idea further and describe a fourth Futamura projection to generate a compiler-
generator generator, and so on.

In a nutshell, the idea of partial evaluation can be used to automatically gen-
erate specialized tools in the program translation ecosystem. Though we could
not find a standard implementation of the specializer Mix, Jones [14] describes
it as a two-phase process: first a division prepass classifies program inputs into
static and dynamic, followed by which the division and the static inputs are
used to compress the program, to the extent possible, statically. Further, note
that though higher levels of Futamura projections do make sense, the literature
finds practical use primarily of the first projection [16], and sometimes the sec-
ond projection [5]. We next highlight how even staged partial analysis is similar
to partial evaluation, and then come up with novel projections that allow one
to stage a whole-program analysis into static and dynamic components.

4 Staged Partial Analysis

As described in Sect. 2, a promising way to avoid incurring the cost of performing
precise (whole-program) analysis during JIT compilation is to first analyze the
available program statically, and then complete the results when the statically
unavailable (or dynamic) dependencies are available (could be done either during
program execution in a VM, or possibly for each version of the unavailable pro-
gram, i.e., libraries, ahead of time). In one way, this implies that the evaluation
of conditional values for a given analysis ψ, as performed by the conditional-
value evaluator CEvalψ, has to be split across static and dynamic components.
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Principles of Staged Static+Dynamic Partial Analysis 11

Fig. 7. A reference to the notations used in rest of the sections.

The consequence of this splitting (or staging) is that the static analysis can only
compute partial results. Such a static analysis, which works on part of the whole
program, is called partial analysis, and the corresponding module to perform
partial analysis can be called a partial analyzer. Subsequently, the partial results
generated by the partial analyzer need to be completed by resolving the dynam-
ically available dependencies. This in turn requires a special evaluator that can
take partial results along with the evaluated values of dynamic dependencies, to
generate final analysis results.

As one of the key contributions of this paper, we now present a novel descrip-
tion of the process of performing partial analysis using statically resolved con-
ditional values, followed by a series of specializations to efficiently generate the
dynamic component of the conditional-value evaluator.

4.1 Partial Analysis

Recall (from Fig. 4) that computing the final analysis result (of analysis ψ) for a
program element x in a method m requires supplying the evaluated values of all
the dependencies of x to the conditional-value evaluator CEvalψ. Whereas for
languages like Java, several of these dependencies might not be available stati-
cally. We now define partial analysis in context of evaluating the set of depen-
dencies available statically; see Fig. 7 for a list of the notations used throughout
this section.

Definition 1 (Partial analysis). For a program element x in method m with
a set gm(x) of conditional values, let the set Sx denote the statically available
dependencies of x. Here, while trying to evaluate gm(x), if we supply Sx to the
partial evaluator Mix (see Sect. 3), we get the result of partially evaluating gm(x)
with respect to the dependencies present in Sx. This process can also be seen as
“specializing” the set of conditional values for the statically available inputs. We
formally term this specialization as “partial analysis”, illustrated in Fig. 8.

When we perform partial analysis of the statically available program, using
the schema shown in Fig. 8, we obtain a specialized set of conditional val-
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12 A. Anand and M. Thakur

Fig. 8. Partial analysis: specializing gm(x) using the set Sx of static dependencies to
obtain partial result.

ues ([gm(x)]Sx
), which can be termed as the2 partial result for the given ele-

ment x. For example, in the code shown in Fig. 3, as class L is a library class not
available for partial analysis, the dependencies in gA.foo(O4) related to L.lib are
not available statically (whereas those related to A.bar are available, forming
the set SO4). Thus, the partial result [gA.foo(O4)]SO4

generated after resolving
the statically available dependencies SO4 in Eq. 1, can be computed as:

= � {D,D, 〈〈L.lib, r1〉,D,D〉,D,D, 〈〈L.lib, r1〉, E,E〉}
(∵ fn(y) �= v, so T = ⊥ i.e. D)

= � {D, 〈〈L.lib, r1〉,D,D〉, 〈〈L.lib, r1〉, E,E〉}
(∵ D �D = D)

= � {〈〈L.lib, r1〉,D,D〉, 〈〈L.lib, r1〉, E,E〉}
(∵ D �X = X) (4)

Given such a partial result, we need a special evaluator that can consume the
runtime (dynamic) inputs to generate final analysis results for the element x.
We now present a novel notion of AM projections that generate these special
evaluators that can be used to accomplish the same.

4.2 First AM Projection

As discussed in Sect. 4.1, the output of performing partial analysis for a given
program element x is a partial result (comprising of specialized conditional val-
ues [gm(x)]Sx

). However, in order to be able to perform any optimization or
transformation involving x, we need the final analysis result fm(x). Thus, we
require a new evaluator that can take the partial result [gm(x)]Sx

as input,
resolve the residual dependencies based on the evaluated values of dynamically
available dependencies (say Dx), and generate fm(x). We now describe how can
we generate such a “partial-result evaluator” for any program element x.

Recall the conditional-value evaluator (CEvalψ) from Fig. 4, which, when
given the set gm(x) of conditional values for an element x and the set INgm(x)

of all dependencies of x, generates the final analysis result fm(x) for the anal-
ysis ψ. The first AM projection (see 1st AMP in Fig. 9) specializes CEvalψ with
2 We obtain a result later (Corollary 2) which implies that this is the only possible

partial result for a given set Sx of statically available dependencies.
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Principles of Staged Static+Dynamic Partial Analysis 13

Fig. 9. AM projections in partial analysis. Note that Mix(1), Mix(2) and Mix(3) are the
same specializers as used in partial evaluation; also, we have added subscripted numbers
for brevity in referencing them.

respect to the partial result [gm(x)]Sx
. The output is a specialized conditional-

value evaluator that can take the set Dx of dynamically available dependencies
of x to generate the final analysis result fm(x). This process of specializing the
conditional-value evaluator can be summarized as follows:

�Mix(1)�(CEvalψ)([gm(x)]Sx
) = Specialized CEvalψ for [gm(x)]Sx

Note that the specialized conditional-value evaluator obtained above can be
used (see the Dynamic module in Fig. 9) to complete the staging of the whole-
program analysis ψ for the program element x. As this evaluator eventually
evaluates a given partial result, we name the output of the first AM projection
as Partial-Result Evaluator.

As an example, for the object O4 of method A.foo from Fig. 3, consider the
partial result obtained in Eq. 4. Once the analysis result for the library class L is
available, the Partial-Result Evaluator takes DO4 (which is formed by the
analysis result available for L.lib(r1)) and generates the final analysis result
for O4, as follows:

A
ut

ho
r 

Pr
oo

f



14 A. Anand and M. Thakur

fA.foo(O4) = � (D,D) (assuming fL.lib(r1) = D, and ∵ ⊥ = D)
= D

Thus, the consequence of the first AM projection is not only the fact that it
is possible to derive a partial-result evaluator, but also that it can be generated
statically. Further, the first AM projection also tells that for a given whole-
program analysis, there also exists a component that can serve as the generator
for such partial-result evaluators (which is the specializer Mix from the theory
of partial evaluation). Note that the first AMP thus parallels the first Futamura
projection; we next show that it is sensible to also extend the latter Futamura
projections in the world of partial analysis.

4.3 Second AM Projection

Observe that the partial-result evaluator generated by the first AM projection is
obtained by specializing the conditional-value evaluator for a single element in
the domain of the analysis being staged. However, program analyses often gen-
erate results for multiple elements in a given program, implying that one may
need to perform this specialization multiple times. To improve the efficiency of
generating such specialized evaluators, we next propose a higher level of special-
ization, as the second AM projection.

The second AM projection (see 2nd AMP in Fig. 9) specializes the specializer
Mix(1) itself with respect to the conditional-value evaluator CEvalψ. The output
is a specialized mix for analysis ψ that takes the specialized set of conditional val-
ues [gm(x)]Sx

for each element x and generates the specialized evaluator CEvalψ
for that x. This process of specializing Mix(1) with CEvalψ can be summarized
as follows:

�Mix(2)�(Mix(1))(CEvalψ) = Specialized Mix(1) for ψ

As the output of the second AM projection can directly be used to generate
the specialized CEvalψ for each program element x, the second AM projection
is a faster way of generating the partial-result evaluator compared to the first.
Hence we name the output of the second AM projection as PREval Generator.
We hypothesize that though this generator would give the same partial-result
evaluator as the first AM projection, one could adopt the second AM projection
in case of time constraints during static compilation.

4.4 Third AM Projection

Observe that the PREval Generator obtained by second AM projection can gen-
erate the partial-result evaluator for any partial result (of the form [gm(x)]Sx

),
for a particular analysis ψ. However, typical compilers perform many differ-
ent program analyses. Consequently, in order to perform multiple analyses in a
staged manner, one may need to perform the specialization of Mix(1) each time
with different CEvalψ, for varying ψ. To improve the efficiency of generating

A
ut

ho
r 

Pr
oo

f



Principles of Staged Static+Dynamic Partial Analysis 15

such specialized generators, we next propose a higher level of specialization, as
the third AM projection.

The third AM projection (see 3rd AMP in Fig. 9) specializes the specializer
Mix(2) with itself. The output is a specialized mix that can take as input the
CEvalψ for any analysis ψ, and generate the specialized mix for that analysis ψ.
This process of specializing Mix(2) with itself can be summarized as follows:

�Mix(3)�(Mix(2))(Mix(2)) = Specialized Mix(2)

A noteworthy point is that just by providing a conditional-value evaluator
for any analysis ψ, the specialized mix can directly be used to generate the
PREval Generator for that analysis ψ. Hence we name the output of the third
AM projection as PREvalGen Generator.

In a nutshell, the three AM projections describe ways to efficiently gener-
ate the dynamic components required for staged static+dynamic whole-program
analyses. We can summarize the specializations proposed in the three projections
as follows:

1. Partial-Result Evaluator

= �Mix(1)�(CEvalψ, Partial Result) = �PREval Generator�(Partial Result)

2. PREval Generator = �Mix(2)�(Mix(1), CEvalψ) = �PREvalGen Generator�(CEvalψ)

3. PREvalGen Generator = �Mix(3)�(Mix(2), Mix(2))

Thus, provided the conditional-value evaluator CEvalψ for a whole-program
analysis ψ, a PREvalGen Generator can be used to generate a PREval
Generator, which, when given a statically obtained partial result, can gener-
ate the corresponding Partial Result Evaluator, which can further be used to
obtain the final analysis result given the evaluated values of dynamic dependen-
cies. In Sect. 5, we discuss our implementation of these components using the
first AM projection; the higher-order AM projections can be used to generate
partial-result evaluators and their generators statically for multiple analyses.

4.5 Correctness, Precision, and Efficiency of Staging

In the previous subsections, we have seen how can we stage a whole-program
analysis into static and dynamic components, based on ideas taken from the
theory of partial evaluation. We now state and prove (by construction) few
important properties of such a staging scheme, with respect to the correctness
of staging and the precision of the results obtained, and comment on the overall
efficiency of the process.

Lemma 1. If the set of statically available dependencies is empty, then the spe-
cialization performed by the first AM projection for a conditional-value evaluator
can be seen in same light as the specialization performed by the first Futamura
projection for a program interpreter.
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16 A. Anand and M. Thakur

Fig. 10. A complete staging of whole-program analysis.

Proof Sketch. The first AM projection (see Fig. 9) specializes the conditional-
value evaluator CEvalψ with a set [gm(x)]Sx

of conditional values that itself is
specialized with the statically available dependencies (Sx). On the other hand,
if Sx is empty (that is, the program element x does not have any static depen-
dency), then the first AM projection would specialize CEvalψ just with gm(x),
similar to the way the first Futamura projection specializes the interpreter (eval-
uator of programs) with a given source program PS (see Fig. 6).

Corollary 1. The Partial-Result Evaluator specialized just with gm(x) is similar
to the specialized interpreter obtained by the first Futamura projection, as both
need to take the complete static+dynamic input (dependencies) for generating
the final output (analysis result).

Lemma 2. Partial evaluation of a program with a statically available input
implies that the program is specialized to the extent possible (that is, maximally
specialized) with respect to that input.

Proof Sketch. A partial evaluator specializes a program P with respect to some
input in1 by precomputing all expressions that depend on in1, and then folding
P to the extent possible [14], that is, in a loop until fixed point. Thus, the output
of a partial evaluator is maximal in terms of evaluation of the program for the
given set of inputs.

Corollary 2. If the first Futamura projection uses the partially evaluated pro-
gram Pin1 (instead of the original program P) for specialization, then the obtained
interpreter is maximally specialized with respect to Pin1 .

Theorem 1. For a given program element and its statically available dependen-
cies, the partial-result evaluator obtained by the first AM projection is maximal
in terms of the conditional-value evaluation that can be performed statically.

Proof Sketch. Follows from Lemma 1 and Lemma 2, for a given set of statically
available dependencies passed in for generating the partial-result evaluator.
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Principles of Staged Static+Dynamic Partial Analysis 17

Theorem 2. For any program element, the analysis results generated by a
whole-program analysis and by the corresponding staged analysis (as summarized
in Fig. 10), are the same.

Proof Sketch. Recall the whole-program analysis schema from Fig. 4. For a given
program element x, its final result fm(x) after performing a whole-program anal-
ysis ψ can be obtained by evaluating the set gm(x) of conditional values with
respect to all the dependencies INgm(x). Now consider the staging of the analysis
ψ as shown in Fig. 10. Here, we have broken down the set INgm(x) of dependencies
into the set Sx of statically available dependencies and the set Dx of dynamically
available dependencies. The static component is a specializer (Mix) that gener-
ates the specialized conditional-value evaluator (Partial-Result Evaluator)
by specializing the whole-program analysis evaluator CEvalψ with respect to the
partial result [gm(x)]Sx

. The generated Partial-Result Evaluator forms the
dynamic component of the staged analysis, and generates fm(x) using Dx. As
established by the theory of partial evaluation, the result obtained by evaluating
a program with respect to all of its inputs is same as the result obtained by
evaluating the specialized program with respect to its dynamic input. It can be
seen by construction that the way Fig. 10 stages a whole-program analysis is
similar to the way partial evaluation stages the evaluation of a program. Hence,
the analysis result generated by our staged analysis would be the same as the
one generated by the whole-program analysis. This equality can be summarized
as follows:

�gm(x)�(INgm(x)) = fm(x) = �[gm(x)]Sx
�(Dx)

Theorem 2 establishes the correctness and precision of the proposed staging
scheme, and Theorem 1 establishes the efficiency (indicating maximal evaluation
during static compilation) achieved by using the staging scheme. Observe that
the proofs became straightforward due to two important illustrations: (i) that
a whole-program analysis could be modeled as the evaluation of dependencies
across program elements; and (ii) that for languages like Java with statically
unavailable program parts, the evaluation of static and dynamic dependencies
could be modeled based on the theory of partial evaluation.

We next describe our experience implementing a specializer for generating
partial-result evaluators from given conditional-value evaluators for the whole
program, similar to the Mix described by Jones in his classic book on partial
evaluation. We approach this problem by describing a language of conditional
values, such that programs in the world of partial analysis become sets of condi-
tional values and program interpretation becomes conditional-value evaluation.

5 Specializers for Partial-Result Evaluation

In this section, similar to a language of programs, we first describe a language
of conditional values that could be used to generate sets of conditional val-
ues (denoting dependence on various kinds of elements) for different program
elements (Sect. 5.1). Next, similar to program interpreters, we design a simple
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18 A. Anand and M. Thakur

Fig. 11. (a) The grammar for our division prepass; (b) extended grammar for
conditional-value evaluation.

evaluator that could resolve those dependencies to generate the final analysis
result for various program elements. We then mirror the process of specializing
a program interpreter by designing a Mix that could specialize conditional-value
evaluators to generate partial-result evaluators (Sect. 5.2). We also compiled and
ran the generated partial-result evaluators, by supplying the statically evaluated
values of Java libraries (computed using the same conditional-value evaluator
discussed above); Sect. 5.3 describes our experience with the same.

Note that though our efforts are independent of the program analysis being
staged, we need a set of conditional values generated for a given program analysis.
In this section, we have chosen a publicly available conditional-value generator
for escape analysis, Stava [27], written in Soot [29]. Stava generates a list of
dependencies for each abstract object (program element), denoting its depen-
dence on other program elements towards computing its escape status: one of
Escapes (E) and DoesNotEscape (D).

5.1 A Grammar for Conditional Values

Based on the kinds of elements on which the analysis result for a given program
element could depend on, Fig. 11 shows a grammar to generate sets of condi-
tional values (denoting those dependencies) for various program elements. Each
program element ProgElem belongs to a Class and a Method, and could be of
one of the five Types: (i) local object in current method; (ii) parameter taken
by current method; (iii) argument passed to another method; (iv) return value
of current method; and (v) field of any other element. Ref is a number, denot-
ing the line number of allocation for LOCAL, parameter and argument number
respectively for PARM and ARG, and simply a filler for the rest. Fields contains a
list of fields (e.g., f1, f2 to denote the element pointed to by X.f1.f2 for any
abstract object X). A conditional value (CV) denotes dependence on a program
element. Essentially, a conditional value <P1 X1 X2> evaluates to X2 if the ele-
ment P1 resolves to X1; see Sect. 2.1). For example, for escape analysis, DepVal
and ResVal could either be D or E. Thus, pairs comprising of program elements
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Fig. 12. Algorithm to perform conditional-value evaluation.

and the conditional values generated for those elements (e.g., by Stava) are the
valid members of the language generated by this grammar. (Note that we had
to make cosmetic changes in Stava to print its output in a form that can be
parsed by our conditional-value grammar.)

5.2 Conditional-Value Evaluators and Specialization

Specialization using the theory of partial evaluation uses an auxiliary “division”
routine to classify program inputs as static and dynamic. Having described a
language of conditional values in the previous section, we next wrote a divi-
sion prepass that classifies each conditional value as static or dynamic (based
on whether it denotes a library dependency while analyzing applications, and
vice-versa). We have implemented the division prepass as a JavaCC [26] visitor
(about 300 lines of code) over the abstract syntax trees generated for the sets
of conditional values prescribing to the grammar described above. We encode
the result of division by prefixing each conditional value with a tag STATIC
or DYNAMIC, resulting into a set of conditional values recognizable using the
extended conditional-value grammar shown in Fig. 11(b). This extended gram-
mar describes the language of conditional values that can be evaluated by our
conditional-value evaluator CEvalΨ .

Figure 12 gives an overview of the computation performed by CEvalΨ . The
evaluator takes as input the set of conditional values gm(x) for a program ele-
ment x belonging to a method m and its dependencies INgm(x), and generates
the partial result [gm(x)]Sx

. First, the evaluator transitively adds all the depen-
dencies of the given element into a list L (lines 2–5). Next, treating the various
dependencies as a graph, the evaluator forms strongly-connected components
(SCCs), denoting sets of equivalent resolved values. In case no element in an
SCC depends on an element from another SCC, all the elements in that SCC
are resolved to the bottom (most precise value) of the lattice of the analysis
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Fig. 13. Schema of the partial-result evaluator emitted for gA.foo(O4).

under consideration (lines 9–10). Finally, for the program element x, the eval-
uator takes a meet as described in Sect. 2.2, generating partial result in case
of dynamic dependencies (line 11). The last two steps (lines 8 to 11) are per-
formed till a fixed point. Our evaluator is also implemented as a JavaCC pass
over the extended conditional-value grammar (from Fig. 11(b)), and spans about
1000 lines of code. Note that the only part of the evaluator that depends on the
analysis for which the conditional-values are generated is the meet operation (to
access its lattice); thus, the evaluator is essentially parametric over the analy-
sis being performed. Hence, for escape analysis (ea), we denote the evaluator
as CEvalea.

Next we have implemented a Mix that takes as input our conditional-value
evaluator and a partial result [gm(x)]Sx

, and specializes the evaluator for the
given partial result. Our Mix works similar to the partial-evaluation Mix pro-
posed by Jones [14], but for Java programs of the kind of CEvalea (we could
not find any existing implementation that we could reuse). Our Mix is imple-
mented in JavaCC (for a grammar that covers the subset of Java required to
parse CEvalea), and spans about 1500 lines of code. The output of our Mix is a
partial-result evaluator for the given partial result.

The fundamental idea behind specializing the evaluator is that its code should
be executed as much as possible for the static dependencies, and the residual
code should take the evaluated values of dynamic dependencies as input to gen-
erate the final analysis-result. Observe that Line 11 in Fig. 12 involves taking
the meet (over the lattice Val) of the resolved dependencies. However, if any
dependence is dynamic, its resolution cannot be performed statically. Hence, in
order to specialize the evaluator for a given partial result, we first check the
kind of dependence (populated by the division prepass), and for each dynamic
dependence, we emit code to read and resolve the same. Next, we emit code to
perform meet over the resolved values obtained therein. Finally, we enclose the
emitted code as the main method of a uniquely named specialized-code class (say
SpecializedCodeN for a unique N), to obtain the corresponding partial-result
evaluator. For example, Fig. 13 shows the schema of the code emitted by our Mix
for the element gA.foo(O4) (see Eq. 4, Sect. 4.1).

Before we could use the partial-result evaluators generated for different pro-
gram elements, we need to obtain the evaluated values of the dynamic dependen-
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Fig. 14. Schema for prototype implementation of staged analysis

cies (libraries in case of Java). We do so by running an offline pass of CEvalea on
the libraries, and obtaining the evaluated values therein. Finally, one can supply
these evaluated values to the specialized codes comprising the partial-result eval-
uators for various program elements, to obtain the final analysis-result. Figure 14
shows the complete scheme of our prototype implementation for generating and
executing partial-result evaluators.

Observe that partial-result evaluation over the evaluated values of dynamic
dependencies, as per our proposed model, can be performed by executing the
specialized code as soon as the dynamic dependencies can be resolved. Thus, we
have the following options:

– Simply place the partial-result evaluators in a JIT compiler.
– As the partial-result evaluators are generated statically for all the program

elements, place them in a VM agnostic to the methods/code-portions that
are JIT compiled.

– For the evaluated dependencies corresponding to each version of the libraries,
invoke the partial-result evaluators ahead-of-time (i.e., statically itself).

The first option can be mapped to the kind of scheme adopted by staging
frameworks such as PYE [28]; however, it would mean we can perform optimiza-
tions for only those elements that belong to methods/regions that are JIT com-
piled (usually very few in tiered runtime systems such as the HotSpot JVM [21]).
On the other hand, the second option could be used to obtain analysis results
in the VM irrespective of the tiered nature and mode of compilation (by imple-
menting corresponding optimization passes). Finally and most interestingly, the
third option makes the process of generating analysis results even independent
of the runtime system, and can also be used to demonstrate the full impact a
staging scheme could make over performing a whole-program analysis.

5.3 Running the Partial-Result Evaluators

In this section, we try to validate the observation staging schemes reduce the
amount of computation one may have to perform at run-time to obtain whole-
program analysis results, significantly. In order to do so, we tried to perform
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a static whole-program escape analysis of a small benchmark moldyn from the
JGF suite [10] (12 application and 3509 referenced library classes), by forcing
Stava to analyze both application and libraries together. We found that for the
whole-program analysis, though Stava generated conditional values for all the
program elements in 4 h, their evaluation (using CEvalea) did not terminate even
in 20 h (on an Intel Xeon E5-2630 2.4 GHz system with 32 cores and 64 GB RAM,
running Cent OS version 7), owing to the large number of residual dependencies
(in the order of tens of thousands).

On the other hand, using the staged scheme (where we evaluate applica-
tion and library dependencies separately), Stava took ∼30 s to generate the
conditional-values for the application code, the division prepass (Step 1 in
Fig. 14) took just a second, the evaluation of statically available dependencies
(Step 2) took ∼3 min, the generation of partial-result evaluators (Step 3) took
about a minute – all performed statically. Correspondingly, for the library classes
referenced to by moldyn, Stava took ∼30 min, division and the evaluation took
∼90 min each – again performed statically. Finally, the execution of partial-result
evaluators to generate final analysis-results, given the partial results for moldyn
and the evaluated values of libraries – that is, the computation that needs to be
performed dynamically – took only ∼35 s.

Thus, we can notice that a staged scheme may not only allow one to obtain
the results of otherwise infeasible whole-program analysis during run-time, but
also do so efficiently, that is, by reducing the actual amount of computation to
be performed during run-time significantly. However, we looked into the list of
dynamic dependencies generated for various program elements and found a scope
to improve this time even further. In particular, we found that multiple program
elements shared several dependencies; we attribute this to the fact that multiple
parts of a Java application might use common library methods (for example,
multiple objects being passed to the method add of java.util.ArrayList). To
leverage this commonality, we modified our Mix to enclose the code generated
for each partial-result evaluator in a separate function, and to concatenate all
those functions in a single PartialResultEvaluator class. To obtain the final
analysis results for all the program elements, we invoke the individual partial-
result-evaluator functions present therein, using the Java reflection API; this
reduced the time required to a mere ∼4 s.

Noting the improvement in the potential time required during run-time using
the staged approach, we conclude that staging partial analyses into static and
dynamic components, backed by a theoretical model presented in our paper, not
only opens up avenues in languages with managed runtimes to perform existing
optimizations more aggressively than present, but can also be used to perform
novel analyses and optimizations that were otherwise practically infeasible.

6 Directions and Connections

Having drawn parallels between the classic theory of partial evaluation and a
promising way to stage program analyses into static and dynamic components,
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we now turn our attention to various recent features and challenges pertaining to
contemporary programming languages. In particular, we address topics of inter-
est that could lead to further work built upon our model of partial analysis for
languages with static and dynamic compilers. We also discuss connections with
few other ways of performing program analysis in managed runtimes. In effect,
we believe this discussion would be useful in driving multiple future directions,
not only for the Java world but also for the wider community interested in.

6.1 Runtime Features: Challenges and Possibilities

In this section, we discuss few challenges posed by modern static+dynamic com-
pilation systems, and discuss the kinds of techniques that could be used to
improve the precision of the analysis results obtained therein.

As described in Sect. 2 (see Eqs. 2 and 3), standard resolution and conditional-
value evaluation assume that all the dependencies can be resolved at run-time
(that is, closed world assumption). However, there could be scenarios because
of the way tiered JIT compilation works in modern JVMs where the results for
few dependencies may not be available at the point of need. For example, if
the program being analyzed uses reflective calls, state-of-the-art static-analysis
frameworks (such as Soot [29]) miss edges in the call-graph for the program, as a
result of which few methods may not get analyzed altogether. On another note,
features such as dynamic classloading [15] in JVMs may bring up classes in a
statically non-deterministic order. For example, in the partial result for element
O4 (see Eq. 4), if the class L is not loaded when the corresponding evaluation is
invoked, the conditional values dependent on L1.lib cannot be resolved. The
only possible sound option in this case would be to take the least precise value
E as the resolved value.

On the other hand, for analyses such as control-flow analysis that have a
richer lattice, it is possible to improve the precision for unresolvable dependen-
cies. Consider the code snippet shown in Fig. 15. In method A.foo, the set of
conditional values representing the possible types of objects that can be pointed-
to by the reference variable z is {〈〈A.foo, b〉, B, Z1〉, 〈〈A.foo, b〉, C, Z2〉}. Under the
existing evaluation scheme, where all the required dependencies are available, the
type of z will get assigned to either Z1 if b’s type is B, or to Z2 if b’s type is
C. However, say in presence of dynamic classloading, if the class C has not been
loaded when the conditional values for z need to be evaluated, then assuming
the least precise value of the lattice (which, for control-flow analysis, is the set of
all types in the program) is highly conservative and may affect many other opti-
mizations such as method inlining and virtual-call resolution. We now discuss a
solution to address this problem.

While performing partial-result evaluation, in case a certain dependency can-
not be resolved, instead of always falling back to the least precise value in the
lattice, we can statically generate some “fallback values” that can be used as the
fallback option during resolution. Observe that the set of possible values that
can be obtained as the analysis result for a given program element x, can be
formed only from the third elements (say resolution values) of the tuples present
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Fig. 15. A Java code snippet to demonstrate control-flow analysis.

in the set of conditional values for x. Thus, we can obtain a fallback value fb(x)
by taking the meet of all such resolution values:

fb(x) = � Λ-

T ∈gm(x)
T [3]

where T [3] gives the third element in each conditional value. As an example,
for the reference variable z in Fig. 15, fb(z) would be the set {Z1, Z2}.

In order to support fallback values, the staging scheme presented in Sect. 4
(see Fig. 10) can be modified as follows. In the static component, for each element
x, apart from the partial result [fm(x)]Sx

, we additionally need to store fb(x).
On the other hand, in the dynamic component, we can modify the partial-result
evaluation as:

fm(x) = � Λ-

T ∈gm(x)
�T �

�〈〈n, y〉, v, v′〉� = (is available(fn(y))) ? ((fn(y) == v) ? v′ : ⊥) : fb(x)

Here, for a given element x, while trying to resolve a conditional value T =
〈〈n, y〉, v, v′〉 ∈ gm(x), we first check if fn(y) is available; if yes, we proceed
with normal resolution, else we use fb(x) as the fallback value. Thus, for the
example shown in Fig. 15, even if the runtime has no information about the
caller of A.foo (that is, no knowledge about the type of the objects pointed-to
by b), using statically computed fb(z), we can resolve the conditional values
for z generated above to obtain the set {Z1, Z2} as the analysis result for z.

Apart from the challenges posed by runtime features discussed above, another
important consideration for static+dynamic analyses is to guarantee/verify that
the static-analysis results correspond to the bytecodes being executed. In case
of a difference, one may need to invalidate the partial-result evaluator for the
corresponding and dependent methods. This can at a simpler level be done by
maintaining a list of affected methods with the statically resolved dependencies,
and be improved by precisely identifying the effect on various program elements.
We believe this to be an interesting future research direction.
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6.2 Drawing Newer Connections

In this section, we first discuss few interesting aspects related to cross-pollination
of ideas between Futamura and AM projections, along with few subtle points
related to generation of conditional values in partial analysis. We then highlight
how our staged analysis scheme can be used along with various other applications
involving static and dynamic analyses.

1. Cross-pollination of Specialization Ideas. We have mentioned previously
that AM projections are similar to yet different from Futamura projections. To
elucidate this point, note that the partial-result evaluator generated by the first
AM projection is a result of specializing the conditional-value evaluator for an
already specialized set of conditional values (see Fig. 9). On the other hand, the
output of the first Futamura projection is a result of specializing the interpreter
for the original source program (see Fig. 6). It is possible to take cue from the
first AM projection and modify the first Futamura projection to specialize the
interpreter too with a partially evaluated program. Doing so would generate a
faster interpreter, as the input program can anyway be specialized with the stat-
ically available input. Similarly, the compiler generated by the second Futamura
projection can also take a specialized program as input to efficiently generate
the specialized interpreter obtained in the first Futamura projection.

As another possibility to explore in the space of specialization, it can be seen
in Sect. 4 (Figs. 4 and 10) that the input taken by our model of whole-program
as well as partial analyses is the set of conditional values, denoting dependencies,
for a given program element. It is possible to visualize the process of generating
these conditional values: from a given program analysis specified as an abstract
interpreter, we can identify the set of statements required to compute the final
analysis result for a particular program element x, as the dependencies of x. This
process of generating conditional values can be made faster: one could model pro-
gram analyses as “conditional-value generators”, and then specialize them with
respect to a given program, similar to the specialization of conditional-value
evaluators done by AM projections. Also note that though this “per element”
modeling is a bit different from the way usual iterative dataflow analyses [20]
are implemented (as aggregate transfer functions over all the variables in the
domain), it fits well with various recently popular ways of writing program anal-
yses, as discussed next.

2. Query- and Feedback-Driven Analyses. In general, whole-program anal-
yses generate results for all the program elements in all the methods of a pro-
gram. On the other hand, one of the growingly popular ways to scale precise
analyses in resource-constrained environments is to compute information only
for elements that are of interest, often specified as a set of queries generated
by various client optimizations [13,24]. These analyses are called “query-driven
analyses”. Staged schemes of the kind proposed in this paper can be integrated
directly with such analyses: First, the client can generate the list of program
elements that are of interest for the query under consideration, based on which
the partial analysis can generate the relevant sets of conditional values. After-
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wards, our staging scheme can be used to specialize the corresponding set of
conditional values and further generate the Partial-Result Evaluator only for
the elements of interest.

For languages that support static+dynamic compilation, one of the ways
to improve the outcomes produced by static analyses is to perform profiling in
the dynamic compiler and give feedback to the static compiler [6,11,30]. As
an instance, Bastani et al. [6] make optimistic assumptions for the unavailable
portions of a program, detect during runtime if an assumption goes wrong, abort
execution if it does, and then refine the static analysis accordingly; this process
is repeated until no assumptions fail. The staged scheme of our kind suits such
analyses particularly well: the feedback from runtime can be used to obtain the
list of affected elements that need to be re-specialized by the static analysis for
subsequent runs of the re-created partial evaluator, thus requiring the (partial)
static analysis to be re-performed only for the affected elements.

7 Related Work

In this section, we discuss relevant related work in four categories: (i) partial eval-
uation; (ii) partial program analysis; (iii) other applications of partial evaluation;
and (iv) staged analysis. To the best of our knowledge, ours is the first scheme
that maps the staging of whole-program analysis across static and dynamic com-
pilation to the theory of partial evaluation.

7.1 Partial Evaluation

Partial evaluation is a well-known technique to specialize programs with stat-
ically available inputs. Jones [14] formalized the theory of partial evaluation
in context of constructing compilers and compiler generators by specializing
subsequent levels of interpreters, using Futamura projections [12]. Perugini and
Williams [23] underlined the difficulty in understanding partial evaluation and
Futamura projections, and devised a diagrammatic approach to visualize the
working of partial evaluation, by modeling program execution using a box-
substitution notation. In this paper, we have also tried to explain the three
Futamura projections, particularly by showing the connections among the out-
puts and inputs of the subsequent projections. Our goal behind this visualization
is to later build a mapping from our proposed model of partial analysis, to gen-
erate partial-result evaluators.

7.2 Partial Program Analysis

The idea of analyzing partial programs was first formalized in a tool called
PPA [9], wherein the goal was to infer types for incomplete Java programs.
In presence of ambiguities, PPA uses heuristics based on the structure of a pro-
gram to generate imprecise but sound results. Similarly, Melo et al. [18] generate
missing type annotations for incomplete C programs, while handling challenges
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imposed by C’s weak type system using “placeholder pre-types”. In presence of
ambiguities, Melo et al. fill the placeholder with an “orphan” type in the lat-
tice of pre-types. Our staged scheme, though performs an analysis of the partial
program to generate partial results statically, is able to generate sound as well
as precise answers based on dynamic inputs, wherein the components needed to
evaluate and complete partial results are generated statically, using novel AM
projections based on the theory of partial evaluation.

There have been prior works [19,22,32] that generate results for incomplete
programs by trying to obtain possible solutions based on examples and then
ranking them for suitability. The limitation of these techniques is that they may
generate unsound results. Our staged scheme, on the other hand, would always
generate sound results, with varying precision based on the dynamic features
supported by a given runtime.

Allen et al. [4] present a scheme to analyze Java libraries in absence of appli-
cation code. They model concrete objects using allocation sites, while approxi-
mating unknown objects using static types, thus generating a combined lattice.
Our approach, though different in the sense that it works for both application
and library code, uses the idea of using static types as fallback values in absence
of dynamic inputs. On the other end of the spectrum, Ali and Lhoták [3] generate
call-graphs to analyze Java application code in absence of libraries, by approxi-
mating library methods as stubs. In comparison, our staging approach, instead
of approximating the libraries, uses their analysis results (obtained offline) to
complete application results during dynamic compilation.

7.3 Other Applications of Partial Evaluation

There have been works that use partial evaluation to speed up different parts
of a program’s execution lifecycle. One such implementation [16] speeds up the
execution of code during JIT compilation by specializing the AST interpreter for
a given language specified in the Truffle [31] framework. This avoids redundancy
in code generation during JIT compilation. Marr and Ducasse [17] compare
the performance of the previous approach with that of tracing JIT compilation
(which optimizes a program by JIT-compiling traces obtained by profiling). On
the other hand, in this paper, we have used the idea of partial evaluation to
speed up the process of obtaining whole-program analysis results (possible during
or just before JIT compilation). Our scheme can be augmented to the Truffle
approach by performing partial analysis of the available program during AST
specialization, and refining the results during JIT compilation.

7.4 Staged Analysis

Staging, though a general idea, has not often found place in static+dynamic
analysis systems. Chug et al. [8] compute and check information-flow properties
for Javascript programs statically, while leaving residual checks that depend on
dynamic inputs for the runtime. Albarghouthi et al. [1] develop specifications for
unknown methods in context of program synthesis. In context of Java, Thakur
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and Nandivada [28] recently proposed the PYE framework, which uses the idea
of conditional values to denote dependencies on dynamic input and resolves them
to generate final results during JIT compilation. In this paper, we have proposed
a general staging framework based on the theory of partial evaluation that can
be used not only to model both the above works, but also to establish and
prove the correctness and precision of the same. Importantly, our base scheme
(Sect. 4) is independent of the language and framework under consideration, and
the extensions for Java runtimes (Sect. 6) can be used to devise corresponding
strategies for other runtimes with novel dynamic features.

8 Conclusion

In this paper, we presented a formal model to stage whole-program analyses
into static and dynamic components. Our staging scheme took inspiration from
the theory of partial evaluation and specialized the evaluators for whole-program
analysis with partial results to generate partial-result evaluators. Similarly, based
on the notion of Futamura projections for partial evaluation, we proposed a novel
notion of AM projections that describe the generation of partial-result evalua-
tors and their generators. The generated partial-result evaluators can also be
placed in managed runtimes to generate final analysis results using the depen-
dencies that become available dynamically. This model allowed us to establish
the correctness and precision of the idea of staging in a straightforward manner.
Moreover, in order to address the challenges presented by the dynamic nature of
modern tiered runtimes, we also discussed possible future directions to extend
the staging scheme further. To the best of our knowledge, ours is the first scheme
that backs the staging of whole-program analysis into static and dynamic com-
ponents, using the established theory of partial evaluation. We envisage that
our formulated theory of partial analysis would be used not only to promote
the design of staged partial analyzers, but to also perform erstwhile infeasible
optimizations, for and beyond Java.
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