
Principles of Staged Static+Dynamic
Partial Analysis

29th Static Analysis Symposium

Aditya Anand and Manas Thakur

Indian Institute of Technology Mandi

December 7th, 2022

Introduction

❖ Several popular languages (such as Java, C#, Scala) use just-in-time
(JIT) compilation.

❖ Performing precise program-analysis during JIT Compilation – highly
inefficient.

❖ Most JIT compilers sacrifice precision for efficiency.

❖ Can we use static analysis to impart precision in JIT analyses?

Aditya Anand SAS’22 December 7th, 2022 1 / 25

Introduction

❖ Several popular languages (such as Java, C#, Scala) use just-in-time
(JIT) compilation.

❖ Performing precise program-analysis during JIT Compilation – highly
inefficient.

❖ Most JIT compilers sacrifice precision for efficiency.

❖ Can we use static analysis to impart precision in JIT analyses?

Aditya Anand SAS’22 December 7th, 2022 1 / 25

Introduction

❖ Several popular languages (such as Java, C#, Scala) use just-in-time
(JIT) compilation.

❖ Performing precise program-analysis during JIT Compilation – highly
inefficient.

❖ Most JIT compilers sacrifice precision for efficiency.

❖ Can we use static analysis to impart precision in JIT analyses?

Aditya Anand SAS’22 December 7th, 2022 1 / 25

Introduction

❖ Several popular languages (such as Java, C#, Scala) use just-in-time
(JIT) compilation.

❖ Performing precise program-analysis during JIT Compilation – highly
inefficient.

❖ Most JIT compilers sacrifice precision for efficiency.

❖ Can we use static analysis to impart precision in JIT analyses?

Aditya Anand SAS’22 December 7th, 2022 1 / 25

Using Static Analysis Results in JIT Compilers

Static Analyzer Analysis Results JVM

Static Dynamic
More Optimizations

Java Source Code

❖ Challenge:

✧ Library code needed to perform whole-program analysis.

✧ Imprecise results due to conservative assumptions.

Aditya Anand SAS’22 December 7th, 2022 2 / 25

Using Static Analysis Results in JIT Compilers

Static Analyzer Analysis Results JVM

Static Dynamic
More Optimizations

Java Source Code

❖ Challenge:

✧ Library code needed to perform whole-program analysis.

✧ Imprecise results due to conservative assumptions.

Aditya Anand SAS’22 December 7th, 2022 2 / 25

Using Static Analysis Results in JIT Compilers

Static Analyzer Analysis Results JVM

Static Dynamic
More Optimizations

Java Source Code

❖ Challenge:

✧ Library code needed to perform whole-program analysis.

✧ Imprecise results due to conservative assumptions.

Aditya Anand SAS’22 December 7th, 2022 2 / 25

Partial Program Analysis

❖ Proposed: OOPSLA 2008

❖ Applied to JIT compilers: TOPLAS 2019

Aditya Anand SAS’22 December 7th, 2022 3 / 25

Partial Program Analysis

❖ Proposed: OOPSLA 2008

❖ Applied to JIT compilers: TOPLAS 2019

Aditya Anand SAS’22 December 7th, 2022 3 / 25

Partial Program Analysis

❖ Proposed: OOPSLA 2008

❖ Applied to JIT compilers: TOPLAS 2019

Aditya Anand SAS’22 December 7th, 2022 3 / 25

PYE Framework and Conditional Values

“Precise-Yet-Efficient” framework generates highly precise analysis results
for JIT compilers at a very low cost:

❖ Offloads expensive analysis to static compiler (javac) and generates
conditional values.

❖ JIT component evaluates the conditional values at run-time and
generates final analysis result.

❖ Essentially, conditional values for a program element enlist the
dependencies of that element.

Aditya Anand SAS’22 December 7th, 2022 4 / 25

PYE Framework and Conditional Values

“Precise-Yet-Efficient” framework generates highly precise analysis results
for JIT compilers at a very low cost:

❖ Offloads expensive analysis to static compiler (javac) and generates
conditional values.

❖ JIT component evaluates the conditional values at run-time and
generates final analysis result.

❖ Essentially, conditional values for a program element enlist the
dependencies of that element.

Aditya Anand SAS’22 December 7th, 2022 4 / 25

Dependencies in form of Conditional Values

1 class A {
2 void foo(B b) {
3 A a1 = new A(); // Object O3

4 A a2 = new A(); // Object O4

5 a1.bar(a2);
6 L l1 = new L(); // Object O6

7 l1.lib(a2); }
8 void bar(A p1) {
9 // no assignment to p1

10 } }

1 class L {
2 // A library class
3 void lib(A r1) {
4 // A library

method
5 ...
6 } }

❖ Conditional values for object O4 (for escape analysis):

gA.foo(O4) = {⟨⟨A.bar, p1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,D,D⟩,
⟨⟨A.bar, p1⟩,E ,E ⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(1)

Aditya Anand SAS’22 December 7th, 2022 5 / 25

Dependencies in form of Conditional Values

1 class A {
2 void foo(B b) {
3 A a1 = new A(); // Object O3

4 A a2 = new A(); // Object O4

5 a1.bar(a2);
6 L l1 = new L(); // Object O6

7 l1.lib(a2); }
8 void bar(A p1) {
9 // no assignment to p1

10 } }

1 class L {
2 // A library class
3 void lib(A r1) {
4 // A library

method
5 ...
6 } }

❖ Conditional values for object O4 (for escape analysis):

gA.foo(O4) = {⟨⟨A.bar, p1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,D,D⟩,
⟨⟨A.bar, p1⟩,E ,E ⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(1)

Aditya Anand SAS’22 December 7th, 2022 5 / 25

Dependencies in form of Conditional Values

1 class A {
2 void foo(B b) {
3 A a1 = new A(); // Object O3

4 A a2 = new A(); // Object O4

5 a1.bar(a2);
6 L l1 = new L(); // Object O6

7 l1.lib(a2); }
8 void bar(A p1) {
9 // no assignment to p1

10 } }

1 class L {
2 // A library class
3 void lib(A r1) {
4 // A library

method
5 ...
6 } }

❖ Conditional values for object O4 (for escape analysis):

gA.foo(O4) = {⟨⟨A.bar, p1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,D,D⟩,
⟨⟨A.bar, p1⟩,E ,E ⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(1)

Aditya Anand SAS’22 December 7th, 2022 5 / 25

Partial Result

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩,D, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ fn(y) ̸= v , so =⊥ i .e D)

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ D ⊓ D = D)

(2)

❖ Partial Result:

fa.foo(O4) = ⊓ea {⟨⟨l.lib, r1⟩,D,D⟩, ⟨⟨l.lib, r1⟩,E ,E ⟩}

Aditya Anand SAS’22 December 7th, 2022 6 / 25

Partial Result

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩,D, ⟨⟨L.lib, r1⟩,E ,E ⟩}
(∵ fn(y) ̸= v , so =⊥ i .e D)

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ D ⊓ D = D)

(2)

❖ Partial Result:

fa.foo(O4) = ⊓ea {⟨⟨l.lib, r1⟩,D,D⟩, ⟨⟨l.lib, r1⟩,E ,E ⟩}

Aditya Anand SAS’22 December 7th, 2022 6 / 25

Partial Result

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩,D, ⟨⟨L.lib, r1⟩,E ,E ⟩}
(∵ fn(y) ̸= v , so =⊥ i .e D)

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ D ⊓ D = D)

(2)

❖ Partial Result:

fa.foo(O4) = ⊓ea {⟨⟨l.lib, r1⟩,D,D⟩, ⟨⟨l.lib, r1⟩,E ,E ⟩}

Aditya Anand SAS’22 December 7th, 2022 6 / 25

Partial Result

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩,D, ⟨⟨L.lib, r1⟩,E ,E ⟩}
(∵ fn(y) ̸= v , so =⊥ i .e D)

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ D ⊓ D = D)

(2)

❖ Partial Result:

fa.foo(O4) = ⊓ea {⟨⟨l.lib, r1⟩,D,D⟩, ⟨⟨l.lib, r1⟩,E ,E ⟩}

Aditya Anand SAS’22 December 7th, 2022 6 / 25

Partial Result

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩,D, ⟨⟨L.lib, r1⟩,E ,E ⟩}
(∵ fn(y) ̸= v , so =⊥ i .e D)

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ D ⊓ D = D)

(2)

❖ Partial Result:

fa.foo(O4) = ⊓ea {⟨⟨l.lib, r1⟩,D,D⟩, ⟨⟨l.lib, r1⟩,E ,E ⟩}

Aditya Anand SAS’22 December 7th, 2022 6 / 25

Existing PYE-like Staged Static+JIT Analyses

❖ Is it correct to stage whole-program analysis across static and JIT
compilation?

✧ What is the form of the evaluator needed during JIT compilation?

Evaluator
??

Evaluator

Static Dynamic

Final Analysis Result

Dynamic Input

Can this be done (efficiently)?

Partial-Result

❖ Does the precision of staged analysis remain same as whole-program
analysis? What about its efficiency?

Aditya Anand SAS’22 December 7th, 2022 7 / 25

Existing PYE-like Staged Static+JIT Analyses

❖ Is it correct to stage whole-program analysis across static and JIT
compilation?

✧ What is the form of the evaluator needed during JIT compilation?

Evaluator
??

Evaluator

Static Dynamic

Final Analysis Result

Dynamic Input

Can this be done (efficiently)?

Partial-Result

❖ Does the precision of staged analysis remain same as whole-program
analysis? What about its efficiency?

Aditya Anand SAS’22 December 7th, 2022 7 / 25

Existing PYE-like Staged Static+JIT Analyses

❖ Is it correct to stage whole-program analysis across static and JIT
compilation?

✧ What is the form of the evaluator needed during JIT compilation?

Evaluator
??

Evaluator

Static Dynamic

Final Analysis Result

Dynamic Input

Can this be done (efficiently)?

Partial-Result

❖ Does the precision of staged analysis remain same as whole-program
analysis? What about its efficiency?

Aditya Anand SAS’22 December 7th, 2022 7 / 25

Existing PYE-like Staged Static+JIT Analyses

❖ Is it correct to stage whole-program analysis across static and JIT
compilation?

✧ What is the form of the evaluator needed during JIT compilation?

Evaluator
??

Evaluator

Static Dynamic

Final Analysis Result

Dynamic Input

Can this be done (efficiently)?

Partial-Result

❖ Does the precision of staged analysis remain same as whole-program
analysis?

What about its efficiency?

Aditya Anand SAS’22 December 7th, 2022 7 / 25

Existing PYE-like Staged Static+JIT Analyses

❖ Is it correct to stage whole-program analysis across static and JIT
compilation?

✧ What is the form of the evaluator needed during JIT compilation?

Evaluator
??

Evaluator

Static Dynamic

Final Analysis Result

Dynamic Input

Can this be done (efficiently)?

Partial-Result

❖ Does the precision of staged analysis remain same as whole-program
analysis? What about its efficiency?

Aditya Anand SAS’22 December 7th, 2022 7 / 25

Partial Evaluation

Partial evaluation [Jones 1996] specializes a given program with its
statically available inputs. The resultant partially evaluated program can
later be executed with the dynamic inputs to generate the final output.

Pin1

in1

P Mix

❖ Advantage: The specialized program Pin1 often executes faster
compared to executing the original program P provided both static and
dynamic inputs together.

Aditya Anand SAS’22 December 7th, 2022 8 / 25

Partial Evaluation

Partial evaluation [Jones 1996] specializes a given program with its
statically available inputs. The resultant partially evaluated program can
later be executed with the dynamic inputs to generate the final output.

Pin1

in1

P Mix

❖ Advantage: The specialized program Pin1 often executes faster
compared to executing the original program P provided both static and
dynamic inputs together.

Aditya Anand SAS’22 December 7th, 2022 8 / 25

Futamura Projections

❖ Partial evaluation has also been used to specialize interpreters and
their generators, based on the notion of Futamura projections.

(Compiled Output)

PS

InterpreterS Mix

Program Output

Specialized InterpreterS for PS

Program Input

Aditya Anand SAS’22 December 7th, 2022 9 / 25

Futamura Projections

❖ Partial evaluation has also been used to specialize interpreters and
their generators, based on the notion of Futamura projections.

(Compiled Output)

PS

InterpreterS Mix

Program Output

Specialized InterpreterS for PS

Program Input

Aditya Anand SAS’22 December 7th, 2022 9 / 25

Futamura Projections

❖ Partial evaluation has also been used to specialize interpreters and
their generators, based on the notion of Futamura projections.

(Compiled Output)

PS

InterpreterS Mix1st FP :

(Compiler)

InterpreterS

Mix Mix2nd FP :

Program Output

Specialized InterpreterS for PS

Specialized Mix(1) for S

Program Input

PS

Aditya Anand SAS’22 December 7th, 2022 10 / 25

Futamura Projections

❖ Partial evaluation has also been used to specialize interpreters and
their generators, based on the notion of Futamura projections.

(Compiled Output)

PS

InterpreterS Mix1st FP :

(Compiler)

InterpreterS

Mix Mix2nd FP :

(Compiler Generator)

Mix(2)

Mix Mix3rd FP :

Program Output

Specialized InterpreterS for PS

Specialized Mix for S

Specialized Mix

Program Input

PS

InterpreterS

Aditya Anand SAS’22 December 7th, 2022 11 / 25

Modeling Partial Analysis based on
Partial Evaluation

Mapped Notation

gm(x) (Conditional Values)Source Program

Sx (Resolved Values)

Dx (Unresolved Values)

CEvalψEvaluator

Runtime Inputs

Static Inputs

Aditya Anand SAS’22 December 7th, 2022 13 / 25

Language for Conditional Values

❖ Conditional Values:
gA.foo(O4) = {⟨⟨A.bar, p1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,D,D⟩,

⟨⟨A.bar, p1⟩,E ,E⟩, ⟨⟨L.lib, r1⟩,E ,E⟩}

❖ Language for Conditional Values:

<Start> ::= <ProgElem> : <CV>*
<ProgElem> ::= <Class> <Method> <Type> <Ref> <Fields>
<CV> ::= <ProgElem> <DepVal> <ResVal>
<Type> ::= LOCAL | PARM | ARG | RETVAL | FIELD
<DepVal> ::= D | E
<ResVal> ::= D | E

❖ Updated Conditional Values:

⟨A foo LOCAL 4 ⟨nil⟩⟩ : {⟨⟨A bar PARM 1⟨nil⟩⟩ D D⟩, ⟨⟨L lib RETVAL 1⟨nil⟩ D D⟩},
{⟨⟨A bar PARM 1⟨nil⟩⟩ E E⟩, ⟨⟨L lib RETVAL 1⟨nil⟩ E E⟩}

Aditya Anand SAS’22 December 7th, 2022 14 / 25

Language for Conditional Values

❖ Conditional Values:
gA.foo(O4) = {⟨⟨A.bar, p1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,D,D⟩,

⟨⟨A.bar, p1⟩,E ,E⟩, ⟨⟨L.lib, r1⟩,E ,E⟩}

❖ Language for Conditional Values:

<Start> ::= <ProgElem> : <CV>*
<ProgElem> ::= <Class> <Method> <Type> <Ref> <Fields>
<CV> ::= <ProgElem> <DepVal> <ResVal>
<Type> ::= LOCAL | PARM | ARG | RETVAL | FIELD
<DepVal> ::= D | E
<ResVal> ::= D | E

❖ Updated Conditional Values:

⟨A foo LOCAL 4 ⟨nil⟩⟩ : {⟨⟨A bar PARM 1⟨nil⟩⟩ D D⟩, ⟨⟨L lib RETVAL 1⟨nil⟩ D D⟩},
{⟨⟨A bar PARM 1⟨nil⟩⟩ E E⟩, ⟨⟨L lib RETVAL 1⟨nil⟩ E E⟩}

Aditya Anand SAS’22 December 7th, 2022 14 / 25

Language for Conditional Values

❖ Conditional Values:
gA.foo(O4) = {⟨⟨A.bar, p1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,D,D⟩,

⟨⟨A.bar, p1⟩,E ,E⟩, ⟨⟨L.lib, r1⟩,E ,E⟩}

❖ Language for Conditional Values:

<Start> ::= <ProgElem> : <CV>*
<ProgElem> ::= <Class> <Method> <Type> <Ref> <Fields>
<CV> ::= <ProgElem> <DepVal> <ResVal>
<Type> ::= LOCAL | PARM | ARG | RETVAL | FIELD
<DepVal> ::= D | E
<ResVal> ::= D | E

❖ Updated Conditional Values:

⟨A foo LOCAL 4 ⟨nil⟩⟩ : {⟨⟨A bar PARM 1⟨nil⟩⟩ D D⟩, ⟨⟨L lib RETVAL 1⟨nil⟩ D D⟩},
{⟨⟨A bar PARM 1⟨nil⟩⟩ E E⟩, ⟨⟨L lib RETVAL 1⟨nil⟩ E E⟩}

Aditya Anand SAS’22 December 7th, 2022 14 / 25

Division of Conditional Values

❖ Tagged Conditional Values:
⟨A foo LOCAL 4 ⟨nil⟩⟩ :

{⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ D D⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ D D⟩,
⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ E E⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ E E⟩}

❖ Language for Tagged Conditional Values:

<Start> ::= <ProgElem> : <CV>*
<ProgElem> ::= <Class> <Method> <Type> <Ref> <Fields>
<CV> ::= <ProgElem> <DepVal> <ResVal>
<Type> ::= LOCAL | PARM | ARG | RETVAL | FIELD
<DepVal> ::= D | E
<ResVal> ::= D | E

(a)

<Start> ::= <ProgElem> : <TaggedCV>*
<TaggedCV> ::= <Tag> <CV>
<Tag> ::= STATIC | DYNAMIC

(b)

Aditya Anand SAS’22 December 7th, 2022 15 / 25

Division of Conditional Values

❖ Tagged Conditional Values:
⟨A foo LOCAL 4 ⟨nil⟩⟩ :

{⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ D D⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ D D⟩,
⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ E E⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ E E⟩}

❖ Language for Tagged Conditional Values:

<Start> ::= <ProgElem> : <CV>*
<ProgElem> ::= <Class> <Method> <Type> <Ref> <Fields>
<CV> ::= <ProgElem> <DepVal> <ResVal>
<Type> ::= LOCAL | PARM | ARG | RETVAL | FIELD
<DepVal> ::= D | E
<ResVal> ::= D | E

(a)

<Start> ::= <ProgElem> : <TaggedCV>*
<TaggedCV> ::= <Tag> <CV>
<Tag> ::= STATIC | DYNAMIC

(b)

Aditya Anand SAS’22 December 7th, 2022 15 / 25

Division of Conditional Values

❖ Tagged Conditional Values:
⟨A foo LOCAL 4 ⟨nil⟩⟩ :

{⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ D D⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ D D⟩,
⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ E E⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ E E⟩}

❖ Language for Tagged Conditional Values:

<Start> ::= <ProgElem> : <CV>*
<ProgElem> ::= <Class> <Method> <Type> <Ref> <Fields>
<CV> ::= <ProgElem> <DepVal> <ResVal>
<Type> ::= LOCAL | PARM | ARG | RETVAL | FIELD
<DepVal> ::= D | E
<ResVal> ::= D | E

(a)

<Start> ::= <ProgElem> : <TaggedCV>*
<TaggedCV> ::= <Tag> <CV>
<Tag> ::= STATIC | DYNAMIC

(b)

Aditya Anand SAS’22 December 7th, 2022 15 / 25

Division of Conditional Values

❖ Tagged Conditional Values:
⟨A foo LOCAL 4 ⟨nil⟩⟩ :

{⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ D D⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ D D⟩,
⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ E E⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ E E⟩}

❖ Language for Tagged Conditional Values:

<Start> ::= <ProgElem> : <CV>*
<ProgElem> ::= <Class> <Method> <Type> <Ref> <Fields>
<CV> ::= <ProgElem> <DepVal> <ResVal>
<Type> ::= LOCAL | PARM | ARG | RETVAL | FIELD
<DepVal> ::= D | E
<ResVal> ::= D | E

(a)

<Start> ::= <ProgElem> : <TaggedCV>*
<TaggedCV> ::= <Tag> <CV>
<Tag> ::= STATIC | DYNAMIC

(b)

Aditya Anand SAS’22 December 7th, 2022 15 / 25

Conditional Value Evaluator

1 Procedure CEval(gm(x), INgm(x))
2 Initialize a list L of statically known dependencies.
3 foreach d ∈ INgm(x) do
4 Add d to L.
5 Add the transitive dependencies of d to L.

6 Form strongly connected components (SCCs) in the list L.
7 repeat
8 foreach strongly connected component S formed above do
9 if ∄e ∈ S s.t. e depends on another SCC then

10 ∀e ∈ S , resolve e to ⊥.

11 Take a meet of the resolved values in each SCC

12 until fixed point;

❖ Evaluated Conditional Values:
= ⊓ea {⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ D D⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ E E⟩}

Aditya Anand SAS’22 December 7th, 2022 16 / 25

Conditional Value Evaluator

1 Procedure CEval(gm(x), INgm(x))
2 Initialize a list L of statically known dependencies.
3 foreach d ∈ INgm(x) do
4 Add d to L.
5 Add the transitive dependencies of d to L.

6 Form strongly connected components (SCCs) in the list L.
7 repeat
8 foreach strongly connected component S formed above do
9 if ∄e ∈ S s.t. e depends on another SCC then

10 ∀e ∈ S , resolve e to ⊥.

11 Take a meet of the resolved values in each SCC

12 until fixed point;

❖ Evaluated Conditional Values:
= ⊓ea {⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ D D⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ E E⟩}

Aditya Anand SAS’22 December 7th, 2022 16 / 25

AM Projections

❖ Specialize the evaluator with the partial result.

(Partial-Result Evaluator)

[gm(x)]Sx

CEvalψ
Mix Specialized CEvalψ for [gm(x)]Sx

Aditya Anand SAS’22 December 7th, 2022 17 / 25

AM Projections

❖ Specialize the evaluator with the partial result.

(Partial-Result Evaluator)

[gm(x)]Sx

CEvalψ
Mix Specialized CEvalψ for [gm(x)]Sx

Aditya Anand SAS’22 December 7th, 2022 17 / 25

AM Projections

❖ Specialize the evaluator with the partial result.

(Partial-Result Evaluator)

[gm(x)]Sx

CEvalψ
Mix(1)

Final Analysis Output

Specialized CEvalψ for [gm(x)]Sx

Dx

STATIC

JIT

PR Evaluator

Aditya Anand SAS’22 December 7th, 2022 18 / 25

Generated Partial Result Evaluator

1 class PartialResultEvaluator {
2 public static void main(String[] args) {
3 // Read the values for dynamic dependencies
4 x1 = Resolved value of <L.lib, r1> // first dependence
5 x2 = Resolved value of <L.lib, r1> // second dependence
6 res = x1 ⊓ea x2
7 print(res);
8 }
9 }

Figure: Schema of the partial-result evaluator emitted for gA.foo(O4).

❖ Can be placed in any VM to obtain the final analysis result for O4.

Aditya Anand SAS’22 December 7th, 2022 19 / 25

2nd AM Projection

❖ Specialize Mix with the conditional-value evaluator.

(Partial-Result Evaluator)

[gm(x)]Sx

CEvalψ
Mix

1st AMP :

(PREval Generator)

CEvalψ

Mix Mix2nd AMP :

Specialized CEvalψ for [gm(x)]Sx

Specialized Mix for ψ

[gm(x)]Sx

Aditya Anand SAS’22 December 7th, 2022 20 / 25

3rd AM Projection

❖ Specialize Mix with Mix.

(Partial-Result Evaluator)

[gm(x)]Sx

CEvalψ Mix
1st AMP :

(PREval Generator)

CEvalψ

Mix Mix2nd AMP :

(PEvalGen Generator)

Mix

Mix Mix3rd AMP :

Specialized CEvalψ for [gm(x)]Sx

Specialized Mix for ψ

Specialized Mix

[gm(x)]Sx

CEvalψ

Aditya Anand SAS’22 December 7th, 2022 21 / 25

Efficiency, Correctness and Precision of Staging

❖ Lemma 1. Statically available Input

If the set of statically available dependencies is empty, then the specialization
performed by the first AM projection for a conditional-value evaluator can be seen
in same light as the specialization performed by the first Futamura projection for
a program interpreter.

❖ Lemma 2. Maximal Specialization

Partial evaluation of a program with a statically available input implies that the
program is specialized to the extent possible (that is, maximally specialized) with
respect to that input.

Aditya Anand SAS’22 December 7th, 2022 22 / 25

Efficiency, Correctness and Precision of Staging

❖ Lemma 1. Statically available Input

If the set of statically available dependencies is empty, then the specialization
performed by the first AM projection for a conditional-value evaluator can be seen
in same light as the specialization performed by the first Futamura projection for
a program interpreter.

❖ Lemma 2. Maximal Specialization

Partial evaluation of a program with a statically available input implies that the
program is specialized to the extent possible (that is, maximally specialized) with
respect to that input.

Aditya Anand SAS’22 December 7th, 2022 22 / 25

Efficiency, Correctness and Precision of Staging

❖ Lemma 1. Statically available Input

If the set of statically available dependencies is empty, then the specialization
performed by the first AM projection for a conditional-value evaluator can be seen
in same light as the specialization performed by the first Futamura projection for
a program interpreter.

❖ Lemma 2. Maximal Specialization

Partial evaluation of a program with a statically available input implies that the
program is specialized to the extent possible (that is, maximally specialized) with
respect to that input.

Aditya Anand SAS’22 December 7th, 2022 22 / 25

Efficiency, Correctness and Precision of Staging

❖ Theorem 1. Efficiency

For a given program element and its statically available dependencies, the partial-
result evaluator obtained by the first AM projection is maximal in terms of the
conditional-value evaluation that can be performed statically.

❖ Theorem 2. Precision and Correctness

For any program element, the analysis results generated by a whole-program anal-
ysis and by the corresponding staged analysis are the same.

Aditya Anand SAS’22 December 7th, 2022 23 / 25

Efficiency, Correctness and Precision of Staging

❖ Theorem 1. Efficiency

For a given program element and its statically available dependencies, the partial-
result evaluator obtained by the first AM projection is maximal in terms of the
conditional-value evaluation that can be performed statically.

❖ Theorem 2. Precision and Correctness

For any program element, the analysis results generated by a whole-program anal-
ysis and by the corresponding staged analysis are the same.

Aditya Anand SAS’22 December 7th, 2022 23 / 25

Future Directions and Connections

❖ Runtime Features: Challenges and Possibilities.

✧ Fallback values in case of other analyses.

❖ Cross-pollination of Specialization Ideas

❖ Query- and Feedback-Driven Analyses.

Aditya Anand SAS’22 December 7th, 2022 24 / 25

Future Directions and Connections

❖ Runtime Features: Challenges and Possibilities.

✧ Fallback values in case of other analyses.

❖ Cross-pollination of Specialization Ideas

❖ Query- and Feedback-Driven Analyses.

Aditya Anand SAS’22 December 7th, 2022 24 / 25

Future Directions and Connections

❖ Runtime Features: Challenges and Possibilities.

✧ Fallback values in case of other analyses.

❖ Cross-pollination of Specialization Ideas

❖ Query- and Feedback-Driven Analyses.

Aditya Anand SAS’22 December 7th, 2022 24 / 25

Future Directions and Connections

❖ Runtime Features: Challenges and Possibilities.

✧ Fallback values in case of other analyses.

❖ Cross-pollination of Specialization Ideas

❖ Query- and Feedback-Driven Analyses.

Aditya Anand SAS’22 December 7th, 2022 24 / 25

Future Directions and Connections

❖ Runtime Features: Challenges and Possibilities.

✧ Fallback values in case of other analyses.

❖ Cross-pollination of Specialization Ideas

❖ Query- and Feedback-Driven Analyses.

Aditya Anand SAS’22 December 7th, 2022 24 / 25

Future Directions and Connections

❖ Runtime Features: Challenges and Possibilities.

✧ Fallback values in case of other analyses.

❖ Cross-pollination of Specialization Ideas

❖ Query- and Feedback-Driven Analyses.

Aditya Anand SAS’22 December 7th, 2022 24 / 25

Conclusion

❖ Formalized the theory of staged static+dynamic partial analysis based
on the theory of partial evaluation.

❖ Projections for efficiently generating the evaluators (and their
generators) for partial results.

❖ Proved the correctness and precision of staged static+dynamic
analysis.

Thank You!

Aditya Anand SAS’22 December 7th, 2022 25 / 25

Conclusion

❖ Formalized the theory of staged static+dynamic partial analysis based
on the theory of partial evaluation.

❖ Projections for efficiently generating the evaluators (and their
generators) for partial results.

❖ Proved the correctness and precision of staged static+dynamic
analysis.

Thank You!

Aditya Anand SAS’22 December 7th, 2022 25 / 25

Conclusion

❖ Formalized the theory of staged static+dynamic partial analysis based
on the theory of partial evaluation.

❖ Projections for efficiently generating the evaluators (and their
generators) for partial results.

❖ Proved the correctness and precision of staged static+dynamic
analysis.

Thank You!

Aditya Anand SAS’22 December 7th, 2022 25 / 25

Conclusion

❖ Formalized the theory of staged static+dynamic partial analysis based
on the theory of partial evaluation.

❖ Projections for efficiently generating the evaluators (and their
generators) for partial results.

❖ Proved the correctness and precision of staged static+dynamic
analysis.

Thank You!

Aditya Anand SAS’22 December 7th, 2022 25 / 25

