
Staged Static+Dynamic Partial Analysis
for Java-like Languages

SERI 2023 Goa

Aditya Anand

Indian Institute of Technology Mandi

June 2nd, 2023



Content

❖ Aditya Anand and Manas Thakur. 2022. Principles of Staged
Static+Dynamic Partial Analysis. In Static Analysis: 29th
International Symposium, SAS 2022, Auckland, New Zealand,
December 5–7, 2022.

❖ Aditya Anand. 2022. A Study of the Impact of Callbacks in
Staged Static+Dynamic Partial Analysis. In Companion
Proceedings of the 2022 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and
Applications: Software for Humanity (SPLASH Companion
2022).

Aditya Anand SERI’23 June 2nd, 2023 1 / 21



Introduction

❖ Several popular languages (such as Java, C#, Scala) use just-in-time
(JIT) compilation.

❖ Performing precise program-analysis during JIT Compilation – highly
inefficient.

❖ Most JIT compilers sacrifice precision for efficiency.

❖ Can we use static analysis to impart precision in JIT analyses?

Aditya Anand SERI’23 June 2nd, 2023 2 / 21



Introduction

❖ Several popular languages (such as Java, C#, Scala) use just-in-time
(JIT) compilation.

❖ Performing precise program-analysis during JIT Compilation – highly
inefficient.

❖ Most JIT compilers sacrifice precision for efficiency.

❖ Can we use static analysis to impart precision in JIT analyses?

Aditya Anand SERI’23 June 2nd, 2023 2 / 21



Introduction

❖ Several popular languages (such as Java, C#, Scala) use just-in-time
(JIT) compilation.

❖ Performing precise program-analysis during JIT Compilation – highly
inefficient.

❖ Most JIT compilers sacrifice precision for efficiency.

❖ Can we use static analysis to impart precision in JIT analyses?

Aditya Anand SERI’23 June 2nd, 2023 2 / 21



Introduction

❖ Several popular languages (such as Java, C#, Scala) use just-in-time
(JIT) compilation.

❖ Performing precise program-analysis during JIT Compilation – highly
inefficient.

❖ Most JIT compilers sacrifice precision for efficiency.

❖ Can we use static analysis to impart precision in JIT analyses?

Aditya Anand SERI’23 June 2nd, 2023 2 / 21



Using Static Analysis Results in JIT Compilers

Static Analyzer Analysis Results JVM

Static Dynamic
More Optimizations

Java Source Code

❖ Challenge:

✧ Library code needed to perform whole-program analysis.

✧ Imprecise results due to conservative assumptions.

Aditya Anand SERI’23 June 2nd, 2023 3 / 21



Using Static Analysis Results in JIT Compilers

Static Analyzer Analysis Results JVM

Static Dynamic
More Optimizations

Java Source Code

❖ Challenge:

✧ Library code needed to perform whole-program analysis.

✧ Imprecise results due to conservative assumptions.

Aditya Anand SERI’23 June 2nd, 2023 3 / 21



Using Static Analysis Results in JIT Compilers

Static Analyzer Analysis Results JVM

Static Dynamic
More Optimizations

Java Source Code

❖ Challenge:

✧ Library code needed to perform whole-program analysis.

✧ Imprecise results due to conservative assumptions.

Aditya Anand SERI’23 June 2nd, 2023 3 / 21



Partial Program Analysis

❖ Proposed: OOPSLA 2008

❖ Applied to JIT compilers: TOPLAS 2019

Aditya Anand SERI’23 June 2nd, 2023 4 / 21



Partial Program Analysis

❖ Proposed: OOPSLA 2008

❖ Applied to JIT compilers: TOPLAS 2019

Aditya Anand SERI’23 June 2nd, 2023 4 / 21



Partial Program Analysis

❖ Proposed: OOPSLA 2008

❖ Applied to JIT compilers: TOPLAS 2019

Aditya Anand SERI’23 June 2nd, 2023 4 / 21



PYE Framework and Conditional Values

“Precise-Yet-Efficient” framework generates highly precise analysis results
for JIT compilers at a very low cost:

❖ Offloads expensive analysis to static compiler (javac) and generates
conditional values.

❖ JIT component evaluates the conditional values at run-time and
generates final analysis result.

❖ Essentially, conditional values for a program element enlist the
dependencies of that element.

Aditya Anand SERI’23 June 2nd, 2023 5 / 21



PYE Framework and Conditional Values

“Precise-Yet-Efficient” framework generates highly precise analysis results
for JIT compilers at a very low cost:

❖ Offloads expensive analysis to static compiler (javac) and generates
conditional values.

❖ JIT component evaluates the conditional values at run-time and
generates final analysis result.

❖ Essentially, conditional values for a program element enlist the
dependencies of that element.

Aditya Anand SERI’23 June 2nd, 2023 5 / 21



Dependencies in form of Conditional Values

1 class A {
2 void foo(B b) {
3 A a1 = new A(); // Object O3

4 A a2 = new A(); // Object O4

5 a1.bar(a2);
6 L l1 = new L(); // Object O6

7 l1.lib(a2); }
8 void bar(A p1) {
9 // no assignment to p1

10 } }

1 class L {
2 // A library class
3 void lib(A r1) {
4 // A library

method
5 ...
6 } }

❖ Conditional values for object O4 (for escape analysis):

gA.foo(O4) = {⟨⟨A.bar, p1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,D,D⟩,
⟨⟨A.bar, p1⟩,E ,E ⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(1)

Aditya Anand SERI’23 June 2nd, 2023 6 / 21



Dependencies in form of Conditional Values

1 class A {
2 void foo(B b) {
3 A a1 = new A(); // Object O3

4 A a2 = new A(); // Object O4

5 a1.bar(a2);
6 L l1 = new L(); // Object O6

7 l1.lib(a2); }
8 void bar(A p1) {
9 // no assignment to p1

10 } }

1 class L {
2 // A library class
3 void lib(A r1) {
4 // A library

method
5 ...
6 } }

❖ Conditional values for object O4 (for escape analysis):

gA.foo(O4) = {⟨⟨A.bar, p1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,D,D⟩,
⟨⟨A.bar, p1⟩,E ,E ⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(1)

Aditya Anand SERI’23 June 2nd, 2023 6 / 21



Dependencies in form of Conditional Values

1 class A {
2 void foo(B b) {
3 A a1 = new A(); // Object O3

4 A a2 = new A(); // Object O4

5 a1.bar(a2);
6 L l1 = new L(); // Object O6

7 l1.lib(a2); }
8 void bar(A p1) {
9 // no assignment to p1

10 } }

1 class L {
2 // A library class
3 void lib(A r1) {
4 // A library

method
5 ...
6 } }

❖ Conditional values for object O4 (for escape analysis):

gA.foo(O4) = {⟨⟨A.bar, p1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,D,D⟩,
⟨⟨A.bar, p1⟩,E ,E ⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(1)

Aditya Anand SERI’23 June 2nd, 2023 6 / 21



Partial Result

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩,D, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ fn(y) ̸= v , so =⊥ i .e D)

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ D ⊓ D = D)

(2)

❖ Partial Result:

fa.foo(O4) = ⊓ea {⟨⟨l.lib, r1⟩,D,D⟩, ⟨⟨l.lib, r1⟩,E ,E ⟩}

Aditya Anand SERI’23 June 2nd, 2023 7 / 21



Partial Result

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩,D, ⟨⟨L.lib, r1⟩,E ,E ⟩}
(∵ fn(y) ̸= v , so =⊥ i .e D)

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ D ⊓ D = D)

(2)

❖ Partial Result:

fa.foo(O4) = ⊓ea {⟨⟨l.lib, r1⟩,D,D⟩, ⟨⟨l.lib, r1⟩,E ,E ⟩}

Aditya Anand SERI’23 June 2nd, 2023 7 / 21



Partial Result

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩,D, ⟨⟨L.lib, r1⟩,E ,E ⟩}
(∵ fn(y) ̸= v , so =⊥ i .e D)

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ D ⊓ D = D)

(2)

❖ Partial Result:

fa.foo(O4) = ⊓ea {⟨⟨l.lib, r1⟩,D,D⟩, ⟨⟨l.lib, r1⟩,E ,E ⟩}

Aditya Anand SERI’23 June 2nd, 2023 7 / 21



Partial Result

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩,D, ⟨⟨L.lib, r1⟩,E ,E ⟩}
(∵ fn(y) ̸= v , so =⊥ i .e D)

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ D ⊓ D = D)

(2)

❖ Partial Result:

fa.foo(O4) = ⊓ea {⟨⟨l.lib, r1⟩,D,D⟩, ⟨⟨l.lib, r1⟩,E ,E ⟩}

Aditya Anand SERI’23 June 2nd, 2023 7 / 21



Partial Result

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩,D, ⟨⟨L.lib, r1⟩,E ,E ⟩}
(∵ fn(y) ̸= v , so =⊥ i .e D)

JgA.foo(O4)K = ⊓ea {D, ⟨⟨L.lib, r1⟩,D,D⟩, ⟨⟨L.lib, r1⟩,E ,E ⟩}

(∵ D ⊓ D = D)

(2)

❖ Partial Result:

fa.foo(O4) = ⊓ea {⟨⟨l.lib, r1⟩,D,D⟩, ⟨⟨l.lib, r1⟩,E ,E ⟩}

Aditya Anand SERI’23 June 2nd, 2023 7 / 21



Existing PYE-like Staged Static+JIT Analyses

❖ Is it correct to stage whole-program analysis across static and JIT
compilation?

✧ What is the form of the evaluator needed during JIT compilation?

Evaluator
??

Evaluator

Static Dynamic

Final Analysis Result

Dynamic Input

Can this be done (efficiently)?

Partial-Result

❖ Does the precision of staged analysis remain same as whole-program
analysis? What about its efficiency?

Aditya Anand SERI’23 June 2nd, 2023 8 / 21



Existing PYE-like Staged Static+JIT Analyses

❖ Is it correct to stage whole-program analysis across static and JIT
compilation?

✧ What is the form of the evaluator needed during JIT compilation?

Evaluator
??

Evaluator

Static Dynamic

Final Analysis Result

Dynamic Input

Can this be done (efficiently)?

Partial-Result

❖ Does the precision of staged analysis remain same as whole-program
analysis? What about its efficiency?

Aditya Anand SERI’23 June 2nd, 2023 8 / 21



Existing PYE-like Staged Static+JIT Analyses

❖ Is it correct to stage whole-program analysis across static and JIT
compilation?

✧ What is the form of the evaluator needed during JIT compilation?

Evaluator
??

Evaluator

Static Dynamic

Final Analysis Result

Dynamic Input

Can this be done (efficiently)?

Partial-Result

❖ Does the precision of staged analysis remain same as whole-program
analysis? What about its efficiency?

Aditya Anand SERI’23 June 2nd, 2023 8 / 21



Existing PYE-like Staged Static+JIT Analyses

❖ Is it correct to stage whole-program analysis across static and JIT
compilation?

✧ What is the form of the evaluator needed during JIT compilation?

Evaluator
??

Evaluator

Static Dynamic

Final Analysis Result

Dynamic Input

Can this be done (efficiently)?

Partial-Result

❖ Does the precision of staged analysis remain same as whole-program
analysis?

What about its efficiency?

Aditya Anand SERI’23 June 2nd, 2023 8 / 21



Existing PYE-like Staged Static+JIT Analyses

❖ Is it correct to stage whole-program analysis across static and JIT
compilation?

✧ What is the form of the evaluator needed during JIT compilation?

Evaluator
??

Evaluator

Static Dynamic

Final Analysis Result

Dynamic Input

Can this be done (efficiently)?

Partial-Result

❖ Does the precision of staged analysis remain same as whole-program
analysis? What about its efficiency?

Aditya Anand SERI’23 June 2nd, 2023 8 / 21



Partial Evaluation

Partial evaluation [Jones 1996] specializes a given program with its
statically available inputs. The resultant partially evaluated program can
later be executed with the dynamic inputs to generate the final output.

Pin1

in1

P Mix

❖ Advantage: The specialized program Pin1 often executes faster
compared to executing the original program P provided both static and
dynamic inputs together.

Aditya Anand SERI’23 June 2nd, 2023 9 / 21



Partial Evaluation

Partial evaluation [Jones 1996] specializes a given program with its
statically available inputs. The resultant partially evaluated program can
later be executed with the dynamic inputs to generate the final output.

Pin1

in1

P Mix

❖ Advantage: The specialized program Pin1 often executes faster
compared to executing the original program P provided both static and
dynamic inputs together.

Aditya Anand SERI’23 June 2nd, 2023 9 / 21



Futamura Projections

❖ Partial evaluation has also been used to specialize interpreters and
their generators, based on the notion of Futamura projections.

(Compiled Output)

PS

InterpreterS Mix

Program Output

Specialized InterpreterS for PS

Program Input

Aditya Anand SERI’23 June 2nd, 2023 10 / 21



Futamura Projections

❖ Partial evaluation has also been used to specialize interpreters and
their generators, based on the notion of Futamura projections.

(Compiled Output)

PS

InterpreterS Mix

Program Output

Specialized InterpreterS for PS

Program Input

Aditya Anand SERI’23 June 2nd, 2023 10 / 21



Modeling Partial Analysis based on
Partial Evaluation



Mapped Notation

gm(x) (Conditional Values)Source Program

Sx (Resolved Values)

Dx (Unresolved Values)

CEvalψEvaluator

Runtime Inputs

Static Inputs

Aditya Anand SERI’23 June 2nd, 2023 12 / 21



Conditional Value and Evaluator

⟨A foo LOCAL 4 ⟨nil⟩⟩ :
{⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ D D⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ D D⟩,
⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ E E⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ E E⟩}

1 Procedure CEval(gm(x), INgm(x))
2 Initialize a list L of statically known dependencies.
3 foreach d ∈ INgm(x) do
4 Add d to L.
5 Add the transitive dependencies of d to L.

6 Form strongly connected components (SCCs) in the list L.
7 repeat
8 foreach strongly connected component S formed above do
9 if ∄e ∈ S s.t. e depends on another SCC then

10 ∀e ∈ S , resolve e to ⊥.

11 Take a meet of the resolved values in each SCC

12 until fixed point;

Aditya Anand SERI’23 June 2nd, 2023 13 / 21



Conditional Value and Evaluator

⟨A foo LOCAL 4 ⟨nil⟩⟩ :
{⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ D D⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ D D⟩,
⟨⟨STATIC A bar PARM 1⟨nil⟩⟩ E E⟩, ⟨⟨DYNAMIC L lib RETVAL 1⟨nil⟩ E E⟩}

1 Procedure CEval(gm(x), INgm(x))
2 Initialize a list L of statically known dependencies.
3 foreach d ∈ INgm(x) do
4 Add d to L.
5 Add the transitive dependencies of d to L.

6 Form strongly connected components (SCCs) in the list L.
7 repeat
8 foreach strongly connected component S formed above do
9 if ∄e ∈ S s.t. e depends on another SCC then

10 ∀e ∈ S , resolve e to ⊥.

11 Take a meet of the resolved values in each SCC

12 until fixed point;

Aditya Anand SERI’23 June 2nd, 2023 13 / 21



AM Projections

❖ Specialize the evaluator with the partial result.

(Partial-Result Evaluator)

[gm(x)]Sx

CEvalψ
Mix Specialized CEvalψ for [gm(x)]Sx

Aditya Anand SERI’23 June 2nd, 2023 14 / 21



AM Projections

❖ Specialize the evaluator with the partial result.

(Partial-Result Evaluator)

[gm(x)]Sx

CEvalψ
Mix Specialized CEvalψ for [gm(x)]Sx

Aditya Anand SERI’23 June 2nd, 2023 14 / 21



AM Projections

❖ Specialize the evaluator with the partial result.

(Partial-Result Evaluator)

[gm(x)]Sx

CEvalψ
Mix(1)

Final Analysis Output

Specialized CEvalψ for [gm(x)]Sx

Dx

STATIC

JIT

PR Evaluator

Aditya Anand SERI’23 June 2nd, 2023 15 / 21



Generated Partial Result Evaluator

1 class PartialResultEvaluator {
2 public static void main(String[] args) {
3 // Read the values for dynamic dependencies
4 x1 = Resolved value of <L.lib, r1> // first dependence
5 x2 = Resolved value of <L.lib, r1> // second dependence
6 res = x1 ⊓ea x2
7 print(res);
8 }
9 }

Schema of the partial-result evaluator emitted for gA.foo(O4).

❖ Can be placed in any VM to obtain the final analysis result for O4.

Aditya Anand SERI’23 June 2nd, 2023 16 / 21



Generated Partial Result Evaluator

1 class PartialResultEvaluator {
2 public static void main(String[] args) {
3 // Read the values for dynamic dependencies
4 x1 = Resolved value of <L.lib, r1> // first dependence
5 x2 = Resolved value of <L.lib, r1> // second dependence
6 res = x1 ⊓ea x2
7 print(res);
8 }
9 }

Schema of the partial-result evaluator emitted for gA.foo(O4).

❖ Can be placed in any VM to obtain the final analysis result for O4.

Aditya Anand SERI’23 June 2nd, 2023 16 / 21



Efficiency, Correctness and Precision of Staging

❖ Lemma 1. Statically available Input

If the set of statically available dependencies is empty, then the specialization
performed by the first AM projection for a conditional-value evaluator can be seen
in same light as the specialization performed by the first Futamura projection for
a program interpreter.

❖ Lemma 2. Maximal Specialization

Partial evaluation of a program with a statically available input implies that the
program is specialized to the extent possible (that is, maximally specialized) with
respect to that input.

Aditya Anand SERI’23 June 2nd, 2023 17 / 21



Efficiency, Correctness and Precision of Staging

❖ Lemma 1. Statically available Input

If the set of statically available dependencies is empty, then the specialization
performed by the first AM projection for a conditional-value evaluator can be seen
in same light as the specialization performed by the first Futamura projection for
a program interpreter.

❖ Lemma 2. Maximal Specialization

Partial evaluation of a program with a statically available input implies that the
program is specialized to the extent possible (that is, maximally specialized) with
respect to that input.

Aditya Anand SERI’23 June 2nd, 2023 17 / 21



Efficiency, Correctness and Precision of Staging

❖ Lemma 1. Statically available Input

If the set of statically available dependencies is empty, then the specialization
performed by the first AM projection for a conditional-value evaluator can be seen
in same light as the specialization performed by the first Futamura projection for
a program interpreter.

❖ Lemma 2. Maximal Specialization

Partial evaluation of a program with a statically available input implies that the
program is specialized to the extent possible (that is, maximally specialized) with
respect to that input.

Aditya Anand SERI’23 June 2nd, 2023 17 / 21



Efficiency, Correctness and Precision of Staging

❖ Theorem 1. Efficiency

For a given program element and its statically available dependencies, the partial-
result evaluator obtained by the first AM projection is maximal in terms of the
conditional-value evaluation that can be performed statically.

❖ Theorem 2. Precision and Correctness

For any program element, the analysis results generated by a whole-program anal-
ysis and by the corresponding staged analysis are the same.

Aditya Anand SERI’23 June 2nd, 2023 18 / 21



Efficiency, Correctness and Precision of Staging

❖ Theorem 1. Efficiency

For a given program element and its statically available dependencies, the partial-
result evaluator obtained by the first AM projection is maximal in terms of the
conditional-value evaluation that can be performed statically.

❖ Theorem 2. Precision and Correctness

For any program element, the analysis results generated by a whole-program anal-
ysis and by the corresponding staged analysis are the same.

Aditya Anand SERI’23 June 2nd, 2023 18 / 21



Challenges with Callbacks

❖ Callbacks: Library method calls an application method.

1 class A {
2 void foo(X p) {
3 Y m = new Y();

// Object O3

4 p.f = m;
5 this.bar(m);
6 }
7 void bar(Y q) {
8 Z r = new Z();

// Object O8

9 q.g = r;
10 }
11 } /* class A */

Conditional Value for Object:

O3: {⟨caller,⟨argument,1⟩,
⟨A.bar,⟨parameter,1⟩⟩}

O8: {⟨caller,⟨argument,1⟩⟩}

foo: Library overridden Method?

❖ Will generate unsound results.

Aditya Anand SERI’23 June 2nd, 2023 19 / 21



Challenges with Callbacks

❖ Callbacks: Library method calls an application method.

1 class A {
2 void foo(X p) {
3 Y m = new Y();

// Object O3

4 p.f = m;
5 this.bar(m);
6 }
7 void bar(Y q) {
8 Z r = new Z();

// Object O8

9 q.g = r;
10 }
11 } /* class A */

Conditional Value for Object:

O3: {⟨caller,⟨argument,1⟩,
⟨A.bar,⟨parameter,1⟩⟩}

O8: {⟨caller,⟨argument,1⟩⟩}

foo: Library overridden Method?

❖ Will generate unsound results.

Aditya Anand SERI’23 June 2nd, 2023 19 / 21



Challenges with Callbacks

❖ Callbacks: Library method calls an application method.

1 class A {
2 void foo(X p) {
3 Y m = new Y();

// Object O3

4 p.f = m;
5 this.bar(m);
6 }
7 void bar(Y q) {
8 Z r = new Z();

// Object O8

9 q.g = r;
10 }
11 } /* class A */

Conditional Value for Object:

O3: {⟨caller,⟨argument,1⟩,
⟨A.bar,⟨parameter,1⟩⟩}

O8: {⟨caller,⟨argument,1⟩⟩}

foo: Library overridden Method?

❖ Will generate unsound results.

Aditya Anand SERI’23 June 2nd, 2023 19 / 21



Challenges with Callbacks

❖ Callbacks: Library method calls an application method.

1 class A {
2 void foo(X p) {
3 Y m = new Y();

// Object O3

4 p.f = m;
5 this.bar(m);
6 }
7 void bar(Y q) {
8 Z r = new Z();

// Object O8

9 q.g = r;
10 }
11 } /* class A */

Conditional Value for Object:

O3: {⟨caller,⟨argument,1⟩,
⟨A.bar,⟨parameter,1⟩⟩}

O8: {⟨caller,⟨argument,1⟩⟩}

foo: Library overridden Method?

❖ Will generate unsound results.

Aditya Anand SERI’23 June 2nd, 2023 19 / 21



Challenges with Callbacks

❖ Callbacks: Library method calls an application method.

1 class A {
2 void foo(X p) {
3 Y m = new Y();

// Object O3

4 p.f = m;
5 this.bar(m);
6 }
7 void bar(Y q) {
8 Z r = new Z();

// Object O8

9 q.g = r;
10 }
11 } /* class A */

Conditional Value for Object:

O3: {⟨caller,⟨argument,1⟩,
⟨A.bar,⟨parameter,1⟩⟩}

O8: {⟨caller,⟨argument,1⟩⟩}

foo: Library overridden Method?

❖ Will generate unsound results.

Aditya Anand SERI’23 June 2nd, 2023 19 / 21



Challenges with Callbacks

❖ Callbacks: Library method calls an application method.

1 class A {
2 void foo(X p) {
3 Y m = new Y();

// Object O3

4 p.f = m;
5 this.bar(m);
6 }
7 void bar(Y q) {
8 Z r = new Z();

// Object O8

9 q.g = r;
10 }
11 } /* class A */

Conditional Value for Object:

O3: {⟨caller,⟨argument,1⟩,
⟨A.bar,⟨parameter,1⟩⟩}

O8: {⟨caller,⟨argument,1⟩⟩}

foo: Library overridden Method?

❖ Will generate unsound results.

Aditya Anand SERI’23 June 2nd, 2023 19 / 21



Challenges with Callbacks

❖ Callbacks: Library method calls an application method.

1 class A {
2 void foo(X p) {
3 Y m = new Y();

// Object O3

4 p.f = m;
5 this.bar(m);
6 }
7 void bar(Y q) {
8 Z r = new Z();

// Object O8

9 q.g = r;
10 }
11 } /* class A */

Conditional Value for Object:

O3: {⟨caller,⟨argument,1⟩,
⟨A.bar,⟨parameter,1⟩⟩}

O8: {⟨caller,⟨argument,1⟩⟩}

foo: Library overridden Method?

❖ Will generate unsound results.

Aditya Anand SERI’23 June 2nd, 2023 19 / 21



Methods and Objects affected by Callbacks

Bench- Callback Total Callback Total
mark methods methods objects objects
avrora 43 3181 147 13344
batik 896 6934 1865 34137
lusearch 123 1971 338 9054
luindex 69 1998 171 10260
pmd 595 5941 1301 30016
sunflow 49 2428 104 14136
h2 639 4777 1315 27610
xalan 821 6396 2131 31488
fop 968 11470 2387 74590
eclipse 1515 29419 3505 79443

❖ On an average 7.7% of methods and 4.1% of objects are affected by callbacks.

Aditya Anand SERI’23 June 2nd, 2023 20 / 21



Methods and Objects affected by Callbacks

Bench- Callback Total Callback Total
mark methods methods objects objects
avrora 43 3181 147 13344
batik 896 6934 1865 34137
lusearch 123 1971 338 9054
luindex 69 1998 171 10260
pmd 595 5941 1301 30016
sunflow 49 2428 104 14136
h2 639 4777 1315 27610
xalan 821 6396 2131 31488
fop 968 11470 2387 74590
eclipse 1515 29419 3505 79443

❖ On an average 7.7% of methods and 4.1% of objects are affected by callbacks.

Aditya Anand SERI’23 June 2nd, 2023 20 / 21



Conclusion

❖ Formalized the theory of staged static+dynamic partial analysis based
on the theory of partial evaluation.

❖ Projections for efficiently generating the evaluators (and their
generators) for partial results.

❖ Proved the correctness and precision of staged static+dynamic
analysis.

❖ Calculated the percentage of callback affected methods and objects.

Thank You!

Aditya Anand SERI’23 June 2nd, 2023 21 / 21



Conclusion

❖ Formalized the theory of staged static+dynamic partial analysis based
on the theory of partial evaluation.

❖ Projections for efficiently generating the evaluators (and their
generators) for partial results.

❖ Proved the correctness and precision of staged static+dynamic
analysis.

❖ Calculated the percentage of callback affected methods and objects.

Thank You!

Aditya Anand SERI’23 June 2nd, 2023 21 / 21



Conclusion

❖ Formalized the theory of staged static+dynamic partial analysis based
on the theory of partial evaluation.

❖ Projections for efficiently generating the evaluators (and their
generators) for partial results.

❖ Proved the correctness and precision of staged static+dynamic
analysis.

❖ Calculated the percentage of callback affected methods and objects.

Thank You!

Aditya Anand SERI’23 June 2nd, 2023 21 / 21



Conclusion

❖ Formalized the theory of staged static+dynamic partial analysis based
on the theory of partial evaluation.

❖ Projections for efficiently generating the evaluators (and their
generators) for partial results.

❖ Proved the correctness and precision of staged static+dynamic
analysis.

❖ Calculated the percentage of callback affected methods and objects.

Thank You!

Aditya Anand SERI’23 June 2nd, 2023 21 / 21



Conclusion

❖ Formalized the theory of staged static+dynamic partial analysis based
on the theory of partial evaluation.

❖ Projections for efficiently generating the evaluators (and their
generators) for partial results.

❖ Proved the correctness and precision of staged static+dynamic
analysis.

❖ Calculated the percentage of callback affected methods and objects.

Thank You!

Aditya Anand SERI’23 June 2nd, 2023 21 / 21


