
A Study of the Impact of Callbacks in Staged
Static+Dynamic Partial Analysis

Aditya Anand
Indian Institute of Technology Mandi

Mandi, Himachal Pradesh, India
s20007@students.iitmandi.ac.in

Abstract
Partial analysis is a program analysis technique used in com-
pilation systems when the whole program is not available.
Many recent promising approaches perform partial analy-
sis statically that involves identifying the interprocedural
dependencies across program elements. These generated
dependencies further get evaluated during runtime while
generating the final analysis result. However, as the applica-
tion and library methods are analyzed independently during
static analysis, these approaches do not account for the effect
of dynamic features such as callbacks. Consequently, in such
scenarios, the runtime (say the Java Virtual Machine) needs
to discard the static-analysis results and use the existing im-
precise builtin analyses. The primary goal of this work is to
find out the percentage of objects and methods that may get
affected by callbacks, and to propose possible techniques to
enhance the generation of dependencies in their presence.

CCS Concepts: • Software and its engineering → Just-
in-time compilers; Dynamic analysis.

Keywords: Partial analysis, callbacks, static analysis
ACM Reference Format:
Aditya Anand. 2022. A Study of the Impact of Callbacks in Staged
Static+Dynamic Partial Analysis. In Companion Proceedings of the
2022 ACM SIGPLAN International Conference on Systems, Program-
ming, Languages, and Applications: Software for Humanity (SPLASH
Companion ’22), December 5–10, 2022, Auckland, New Zealand.ACM,
NewYork, NY, USA, 3 pages. https://doi.org/10.1145/3563768.3563957

1 Motivation and Background
Programs written in modern languages such as Java and C#
are compiled just-in-time (JIT) to native code during execu-
tion. As the JIT-compilation time affects the execution-time

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SPLASH Companion ’22, December 5–10, 2022, Auckland, New Zealand
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9901-2/22/12. . . $15.00
https://doi.org/10.1145/3563768.3563957

1 class A {

2 void foo(X p) {

3 Y m = p.f;

4 this.bar(m);}

5 void bar(Y q) {

6 Z r = new Z();

7 q.g = r;

8 }} /* class A */

Figure 1. Example to demonstrate dependencies.

of the program under consideration, typical JIT compilers
perform imprecise (e.g., intraprocedural) program analyses.
One of the promising ways to generate precise analysis re-
sults is to perform partial analysis of the available program
statically, and record the dependencies on the unavailable
portions as conditional values [1, 5, 7]. These dependencies
get resolved at runtime to generate final analysis results.
Though this approach generates precise program-analysis
results efficiently during JIT compilation, it does not take
dynamic features such as callbacks into consideration. This
motivated us to study and find out the proportion of objects
and methods that actually may get impacted due to callbacks,
and to explore strategies to mitigate the same. We expect
that our findings will help us derive sound and robust par-
tial analyses for Java-like languages, as well as promote the
adaptability of such static+dynamic approaches in future.

We now illustrate the generation of dependencies in exist-
ing static+dynamic analysis schemes, alongwith the problem
in presence of callbacks, using an example.
1. Dependencies in static+dynamic partial analysis.

In order to address the absence of libraries while statically
analyzing Java applications (and vice-versa), existing ap-
proaches [1, 7] generate results for various elements of a
program (e.g. abstract objects in Java) in terms of dependen-
cies on other program elements. As an example, consider the
code snippet shown in Figure 1. Here, the variable m points
to an object from the caller, in absence of whose code the
analysis would record a dependency <caller,arg1> for the
object pointed to by m, denoting the first argument passed
to foo by its caller(s). Similarly, the object pointed to by r in
the method bar depends on the argument passed to bar and
also (transitively) on the argument passed to foo.

2. Partial analysis in presence of callbacks. Java offers
several dynamic features such as callbacks, reflection, etc.
Performing static analysis without considering these fea-
tures may generate unsound results. For example, callbacks
are a popular dynamic feature where the library methods
can also invoke an application method. Thus, if the method

72

https://orcid.org/0000-0003-3752-3908
https://doi.org/10.1145/3563768.3563957
https://doi.org/10.1145/3563768.3563957

SPLASH Companion ’22, December 5–10, 2022, Auckland, New Zealand A. Anand

1 Procedure callbackObjectsAndMethods()
2 foreach application class c do
3 if c overrides or implements a library method m then
4 Mark𝑚 and all its parameters as callback_affected.

5 repeat
6 foreach callback_affected method mtd do
7 foreach object obj ∈ mtd do
8 if obj has dependency on a callback_affected

formal parameter then
9 Mark obj as a callback_affected object.

10 foreach callback_affected object obj do
11 if obj is passed as the kth argument to another method

n then
12 Mark n and its kth parameter as

callback_affected.

13 until fixpoint;

Figure 2. Finding objects and methods dependent on callbacks.

foo is a library-overridden method, the statically unknown
argument passed to foo from the library may affect the anal-
ysis result of the objects pointed-to by m in foo as well as by r

in bar. However, existing staged approaches [1, 4, 7, 9] for
performing partial static+dynamic analysis ignore callbacks
and may generate unsound results in their presence.

2 Impact of Callbacks
To handle callbacks while performing partial analysis for a
Java application, we must first identify the program element
that may get affected by possible callbacks from libraries. We
now describe our approach to estimate the number of objects
and methods that may depend on such callbacks; see Figure 2.
The procedure callbackObjectsAndMethods maintains

a data structure named callback_affected (overloaded, for
brevity) to record program elements that may be affected by
callbacks. To begin with, lines 2-4 identify library-overridden
or implemented methods in the application classes, and mark
all their parameters as potentially callback-affected. Next,
for all the callback-affected methods, if any of their local ob-
jects depends on the existing callback-affected methods and
objects, lines 6-9 mark those objects also as callback-affected.
Finally, if any of the callback-affected objects is passed to
another method, say as the 𝑘𝑡ℎ argument, we mark the callee
as well as the corresponding parameter as callback-affected
(lines 10-12). We perform the previous two operations till a
fixed point, in order to get all the callback-affected methods
and objects in the application classes.

3 Study Setup and Preliminary Results
1. Static analysis.We extend an existing static program-

analysis tool called Stava [6] that generates dependencies for
each program element. Stava is written in Soot [8], a popular
Java Bytecode analysis framework, and uses TamiFlex [3] to
resolve reflective calls while constructing the call-graph.

Bench- Callback Total Callback Total
mark methods methods objects objects
avrora 43 3181 147 13344
batik 896 6934 1865 34137
lusearch 123 1971 338 9054
luindex 69 1998 171 10260
pmd 595 5941 1301 30016
sunflow 49 2428 104 14136
h2 639 4777 1315 27610
xalan 821 6396 2131 31488
fop 968 11470 2387 74590
eclipse 1515 29419 3505 79443

Figure 3. No. of methods and objects affected by callbacks.

2. Benchmarks and system configuration.We consid-
ered 10 benchmarks from the DaCapo suite[2] version 9.12
using the “default” input size. The benchmarks excluded
from the suite could not be analyzed – either by Soot or by
TamiFlex. Our experiments have been performed on a 3.00
GHz Intel(R) Xeon(R) system with 48 cores and 100 GB of
memory, running Ubuntu 20.04.4 LTS.
Figure 3 shows the number of methods and objects that

may be affected by potential callbacks, along with the to-
tal number of methods and objects in the corresponding
benchmark. We find that on an average, the 7.7% of methods
can be affected by callbacks from libraries, either directly
or transitively through parameters. On the other hand, we
found that 4.1% of objects contain dependencies related to
the parameters involved in potential callbacks. Thus, we can
observe that the static-analysis results computed for these
many program elements, by prior static+dynamic schemes,
may be unsound in presence of corresponding callbacks at
run-time. On one hand, an overall low percentage of objects
affected by callbacks enhances the confidence on the poten-
tial of existing static+dynamic schemes, and on the other
hand shows that it is important to develop schemes that
maintain precision and soundness in their presence.

4 Conclusion and Future Work
In order to balance the trade-off between the efficiency and
precision of generating whole-program analysis results in
JIT-based runtimes, recent approaches propose partial anal-
ysis of the statically available program. However, these ap-
proaches either ignore dynamic features such as callbacks,
or generate conservative results in their presence. In order
to address this problem, we have first computed the percent-
age of application methods and objects that may potentially
be affected by callbacks made by Java libraries. We found
that the percentage is low enough to maintain confidence
on staged static+dynamic schemes, and high enough to de-
serve a solution that enhances their practicality further. In
future, we plan to extend the idea of staged partial analy-
sis, by efficiently and precisely modeling the identification
and generation of dependencies across program elements, in
presence of dynamic features such as callbacks.

73

A Study of the Impact of Callbacks in Staged Static+Dynamic Partial Analysis SPLASH Companion ’22, December 5–10, 2022, Auckland, New Zealand

References
[1] Aditya Anand and Manas Thakur. 2022. Principles of Staged

Static+Dynamic Partial Analysis. In Proceedings of the 29th Static Analy-
sis Symposium (SAS 2022). Springer International Publishing, 30 pages.

[2] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. 2006. The DaCapo Benchmarks: Java Benchmarking De-
velopment and Analysis. SIGPLAN Not. 41, 10 (oct 2006), 169–190.
https://doi.org/10.1145/1167515.1167488

[3] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira
Mezini. 2011. Taming Reflection: Aiding Static Analysis in the Presence
of Reflection and Custom Class Loaders. https://github.com/secure-
software-engineering/tamiflex. In Proceedings of the 33rd International
Conference on Software Engineering (Waikiki, Honolulu, HI, USA) (ICSE
’11). ACM, New York, NY, USA, 241–250. https://doi.org/10.1145/
1985793.1985827

[4] Barthélémy Dagenais and Laurie Hendren. 2008. Enabling Static Analy-
sis for Partial Java Programs. SIGPLAN Not. 43, 10 (Oct. 2008), 313–328.

https://doi.org/10.1145/1449955.1449790
[5] Rishi Sharma, Shreyansh Kulshreshtha, and Manas Thakur. 2022. Can

We Run in Parallel? Automating Loop Parallelization for TornadoVM.
https://doi.org/10.48550/arXiv.2205.03590

[6] Nikhil T R, Dheeraj Yadav, and Manas Thakur. 2021. Stava. https:
//github.com/CompL-IITMandi/stava.

[7] Manas Thakur and V. Krishna Nandivada. 2019. PYE: A Framework for
Precise-Yet-Efficient Just-In-Time Analyses for Java Programs. ACM
Trans. Program. Lang. Syst. 41, 3, Article 16 (July 2019), 37 pages. https:
//doi.org/10.1145/3337794

[8] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization
Framework. In Proceedings of the 1999 Conference of the Centre for Ad-
vanced Studies on Collaborative Research (Mississauga, Ontario, Canada)
(CASCON ’99). IBM Press, 13–23. http://dl.acm.org/citation.cfm?id=
781995.782008

[9] Hao Zhong and Xiaoyin Wang. 2017. Boosting Complete-Code Tool
for Partial Program. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (Urbana-Champaign, IL,
USA) (ASE 2017). IEEE Press, 671–681.

74

https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1449955.1449790
https://doi.org/10.48550/arXiv.2205.03590
https://github.com/CompL-IITMandi/stava
https://github.com/CompL-IITMandi/stava
https://doi.org/10.1145/3337794
https://doi.org/10.1145/3337794
http://dl.acm.org/citation.cfm?id=781995.782008
http://dl.acm.org/citation.cfm?id=781995.782008

	Abstract
	1 Motivation and Background
	2 Impact of Callbacks
	3 Study Setup and Preliminary Results
	4 Conclusion and Future Work
	References

